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The basic issue concerning production in 
welfare economics is whether a market solu- 
tion will yield the socially optimum kinds 
and quantities of commodities. It is well 
known that problems can arise for three 
broad reasons: distributive justice; external 
effects; and scale economies. This paper is 
concerned with the last of these. 

The basic principle is easily stated.' A 
commodity should be produced if the costs 
can be covered by the sum of revenues and 
a properly defined measure of consumer's 
surplus. The optimum amount is then 
found by equating the demand price and the 
marginal cost. Such an optimum can be 
realized in a market if perfectly discrim- 
inatory pricing is possible. Otherwise we 
face conflicting problems. A competitive 
market fulfilling the marginal condition 
would be unsustainable because total profits 
would be negative. An element of monopoly 
would allow positive profits, but would 
violate the marginal condition.2 Thus we 
expect a market solution to be suboptimal. 
However, a much more precise structure 
must be put on the problem if we are to 
understand the nature of the bias involved. 

It is useful to think of the question as one 
of quantity versus diversity. With scale 
economies, resources can be saved by pro- 
ducing fewer goods and larger quantities of 
each. However, this leaves less variety, 
which entails some welfare loss. It is easy 
and probably not too unrealistic to model 
scale economies by supposing that each 

potential commodity involves some fixed 
set-up cost and has a constant marginal 
cost. Modeling the desirability of variety 
has been thought to be difficult, and several 
indirect approaches have been adopted. 
The Hotelling spatial model, Lancaster's 
product characteristics approach, and the 
mean-variance portfolio selection model 
have all been put to use.3 These lead to re- 
sults involving transport costs or correla- 
tions among commodities or securities, and 
are hard to interpret in general terms. We 
therefore take a direct route, noting that the 
convexity of indifference surfaces of a con- 
ventional utility function defined over the 
quantities of all potential commodities al- 
ready embodies the desirability of variety. 
Thus, a consumer who is indifferent be- 
tween the quantities (1,0) and (0,1) of two 
commodities prefers the mix (1/2,1/2) to 
either extreme. The advantage of this view 
is that the results involve the familiar own- 
and cross-elasticities of demand functions, 
and are therefore easier to comprehend. 

There is one case of particular interest on 
which we concentrate. This is where poten- 
tial commodities in a group or sector or in- 
dustry are good substitutes among them- 
selves, but poor substitutes for the other 
commodities in the economy. Then we are 
led to examining the market solution in re- 
lation to an optimum, both as regards 
biases within the group, and between the 
group and the rest of the economy. We ex- 
pect the answer to depend on the intra- and 
intersector elasticities of substitution. To 
demonstrate the point as simply as possible, 
we shall aggregate the rest of the economy 
into one good labeled 0, chosen as the 
numeraire. The economy's endowment of it 
is normalized at unity; it can be thought of 
as the time at the disposal of the consumers. 
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The potential range of related products is 
labeled 1,2,3,.... Writing the amounts of 
the various commodities as x0 and x = (xl, 
X2, X3 ..., we assume a separable utility 
function with convex indifference surfaces: 

(1) u = U(xO, V(x1,x2,X3..)) 

In Sections I and II we simplify further 
by assuming that V is a symmetric function, 
and that all commodities in the group have 
equal fixed and marginal costs. Then the 
actual labels given to commodities are im- 
material, even though the total number n 
being produced is relevant. We can thus 
label these commodities 1,2, ..., n, where 
the potential products (n + 1), (n + 2), ... 
are not being produced. This is a restrictive 
assumption, for in such problems we often 
have a natural asymmetry owing to grad- 
uated physical differences in commodities, 
with a pair close together being better 
mutual substitutes than a pair farther apart. 
However, even the symmetric case yields 
some interesting results. In Section III, we 
consider some aspects of asymmetry. 

We also assume that all commodities 
have unit income elasticities. This differs 
from a similar recent formulation by 
Michael Spence, who assumes U linear in 
xo, so that the industry is amenable to 
partial equilibrium analysis. Our approach 
allows a better treatment of the intersectoral 
substitution, but the other results are very 
similar to those of Spence. 

We consider two special cases of (1). In 
Section I, V is given a CES form, but U is 
allowed to be arbitrary. In Section II, U is 
taken to be Cobb-Douglas, but V has a 
more general additive form. Thus the for- 
mer allows more general intersector rela- 
tions, and the latter more general intra- 
sector substitution, highlighting different 
results. 

Income distribution problems are ne- 
glected. Thus U can be regarded as repre- 
senting Samuelsonian social indifference 
curves, or (assuming the appropriate aggre- 
gation conditions to be fulfilled) as a mul- 
tiple of a representative consumer's utility. 
Product diversity can then be interpreted 
either as different consumers using different 

varieties, or as diversification on the part 
of each consumer. 

1. Constant-Elasticity Case 

A. Demand Functions 

The utility function in this section is 

(2) ( {x} I/P) 

For concavity, we need p < 1. Further, 
since we want to allow a situation where 
several of the xi are zero, we need p > 0. We 
also assume U homothetic in its arguments. 

The budget constraint is 
n 

(3) xO + Pi= I 

where pi are prices of the goods being pro- 
duced, and I is income in terms of the 
numeraire, i.e., the endowment which has 
been set at I plus the profits of the firms 
distributed to the consumers, or minus the 
lump sum deductions to cover the losses, as 
the case may be. 

In this case, a two-stage budgeting pro- 
cedure is valid.4 Thus we define dual quan- 
tity and price indices 

(4) y = {?, q= p 

where A = (I - p)/p, which is positive since 
O < p < 1. Then it can be shown5 that in the 
first stage, 

(S) y - I s(q) 
xo = I(1 - s(q)) 

q 
for a function s which depends on the form 
of U. Writing a(q) for the elasticity of sub- 
stitution between xo and y, we define 0(q) as 
the elasticity of the function s, i.e., qs'(q)/ 
s(q). Then we find 

(6) 0(q) = 11 - o(q)} $1 - s(q)} < 1 

but 0(q) can be negative as a(q) can ex- 
ceed 1. 

4Sec p. 21 of John Green. 
5These details and several others are omitted to save 

space, but can be found in the working paper by the 
authors, cited in the references. 
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Turning to the second stage of the prob- 
lem, it is easy to show that for each i, 

(7) = 

where y is defined by (4). Consider the effect 
of a change in pi alone. This affects xi di- 
rectly, and also through q; thence through y 
as well. Now from (4) we have the elasticity 

(8)dlg =(q 
d logpi Pi 

So long as the prices of the products in the 
group are not of different orders of mag- 
nitude, this is of the order (I/n). We shall 
assume that n is reasonably large, and ac- 
cordingly neglect the effect of each Pi on q; 
thus the indirect effects on xi. This leaves us 
with the elasticity 

() logx_ -I -(I + Oi) 
(9) =- .. 

dlogpi (I -P) 

In the Chamberlinian terminology, this is 
the elasticity of the dd curve, i.e., the curve 
relating the demand for each product type 
to its own price with all other prices held 
constant. 

In our large group case, we also see that 
for i s j, the cross elasticity d log xi/d log p1 
is negligible. However, if all prices in the 
group move together, the individually small 
effects add to a significant amount. This 
corresponds to the Chamberlinian DD 
curve. Consider a symmetric situation 
where xi = x and pi = p for all i from I 
to n. We have 

(10) Y= xn-IP= xnI+ 

q = pn - = pn t0-P)/P 

and then from (5) and (7), 

(11) X Is(q) 
pn 

The elasticity of this is easy to calculate; we 
find 

(12) Ig - - - l (q)] d logp 

Then (6) shows that the DD curve slopes 

downward. The conventional condition that 
the dd curve be more elastic is seen from (9) 
and (12) to be 

(13) + (q)>? 

Finally, we observe that for i + j, 

(14) xi Pi ] 

Thus 1/(1 - p) is the elasticity of substitu- 
tion between any two products within the 
group. 

B. Market Equilibrium 

It can be shown that each commodity is 
produced by one firm. Each firm attempts 
to maximize its profit, and entry occurs un- 
til the marginal firm can only just break 
even. Thus our market equilibrium is the 
familiar case of Chamberlinian monopolis- 
tic competition, where the question of 
quantity versus diversity has often been 
raised.6 Previous analyses have failed to 
consider the desirability of variety in an ex- 
plicit form, and have neglected various 
intra- and intersector interactions in de- 
mand. As a result, much vague presumption 
that such an equilibrium involves excessive 
diversity has built up at the back of the 
minds of many economists. Our analysis 
will challenge several of these ideas. 

The profit-maximization condition for 
each firm acting on its own is the familiar 
equality of marginal revenue and marginal 
cost. Writing c for the common marginal 
cost, and noting that the elasticity of de- 
mand for each firm is (1 + ,B)/,B, we have 
for each active firm: 

pi (I_ d) c 

Writing Pe for the common equilibrium 
price for each variety being produced, we 
have 

(15) Pe = C(I + _ 
p 

6See Edwin Chamberlin, Nicholas Kaldor, and 
Robert Bishop. 
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The second condition for equilibrium is 
that firms enter until the next potential 
entrant would make a loss. If n is large 
enough so that I is a small increment, we 
can assume that the marginal firm is exactly 
breaking even, i.e., (pn - c)xn = a, where xn 
is obtained from the demand function and a 
is the fixed cost. With symmetry, this im- 
plies zero profit for all intramarginal firms 
as well. Then I = 1, and using (I I) and (15) 
we can write the condition so as to yield the 
number ne of active firms: 

S(Penf l) a 
( 16) e 

- 
Pene f3c 

Equilibrium is unique provided S(Penf-)/ 

Pen is a monotonic function of n. This re- 
lates to our carlier discussion about the two 
demand curves. From (11) we see that the 
behavior of s(pn -)/pn as n increases tells 
us how the demand curve DD for each firm 
shifts as the number of firms increases. It is 
natural to assume that it shifts to the left, 
i.e., the function above decreases as n in- 
creases for each fixed p. The condition for 
this in elasticity form is easily seen to be 

(17) 1 + f3(q) > 0 

This is exactly the same as (13), the condi- 
tion for the dd curve to be more elastic than 
the DD curve, and we shall assume that it 
holds. 

The condition can be violated if c(q) is 
sufficiently higher than one. In this case, an 
increase in n lowers q, and shifts demand 
towards the monopolistic sector to such an 
extent that the demand curve for each firm 
shifts to the right. However, this is rather 
implausible. 

Conventional Chamberlinian analysis as- 
sumes a fixed demand curve for the group 
as a whole. This amounts to assuming that 
n * x is independent of n, i.e., that s(pn -I) is 
independent of n. This will be so if , = 0, or 
if' (q) = I for all q. The former is equiv- 
alent to assuming that p = 1, when all 
products in the group are perfect substi- 
tutes, i.e., diversity is not valued at all. That 
would be contrary to the intent of the whole 
analysis. Thus, implicitly, conventional 
analysis assumes o(q) = 1. This gives a con- 

stant budget share for the monopolistically 
competitive sector. Note that in our para- 
metric formulation, this implies a unit- 
elastic DD curve, (17) holds, and so equi- 
librium is unique. 

Finally, using (7), (1 1), and (16), we can 
calculate the equilibrium output for each 
active firm: 

(18) Xe 

We can also write an expression for the 
budget share of the group as a whole: 

(1 9) Se = s (qe) 

where qe = Pen -0 

These will be useful for subsequent com- 
parisons. 

C. Constrained Optimum 

The next task is to compare the equi- 
librium with a social optimum. With 
economies of scale, the first best or uncon- 
strained (really constrained only by tech- 
nology and resource availability) optimum 
requires pricing below average cost, and 
therefore lump sum transfers to firms to 
cover losses. The conceptual and practical 
difficulties of doing so are clearly formid- 
able. It would therefore appear that a more 
appropriate notion of optimality is a con- 
strained one, where each firm must have 
nonnegative profits. This may be achieved 
by regulation, or by excise or franchise 
taxes or subsidies. The important restriction 
is that lump sum subsidies are not available. 

We begin with such a constrained opti- 
mum. The aim is to choose n, Pi, and xi so 
as to maximize utility, satisfying the de- 
mand functions and keeping the profit for 
each firm nonnegative. The problem is 
somewhat simplified by the result that all 
active firms should have the same output 
levels and prices, and should make exactly 
zero profit. We omit the proof. Then we can 
set I = 1, and use (5) to express utility as a 
function of q alone. This is of course a de- 
creasing function. Thus the problem of 
maximizing u becomes that of minimizing 
q, i.e., 
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min pn 
n,p 

subject to 

(20) (p - c) s(-pn a 
pn 

To solve this, we calculate the logarithmic 
marginal rate of substitution along a level 
curve of the objective, the similar rate of 
transformation along the constraint, and 
equate the two. This yields the condition 

C + 0(q) 
(21) p - c _ 

1 + /O(q) - 

The second-order condition can be shown 
to hold, and (21) simplifies to yield the price 
for each commodity produced in the con- 
strained optimum, pc, as 

(22) pC = c(l + d) 

Comparing (15) and (22), we see that the 
two solutions have the same price. Since 
they face the same break-even constraint, 
they have the same number of firms as well, 
and the values for all other variables can be 
calculated from these two. Thus we have a 
rather surprising case where the monopo- 
listic competition equilibrium is identical 
with the optimum constrained by the lack 
of lump sum subsidies. Chamberlin once 
suggested that such an equilibrium was "a 
sort of ideal"; our analysis shows when and 
in what sense this can be true. 

D. Unconstrained Optintunt 

These solutions can in turn be compared 
to the unconstrained or first best optimum. 
Considerations of convexity again establish 
that all active firms should produce the 
same output. Thus we are to choose n firms 
each producing output x in order to maxi- 
mize 

(23) u = U(1 - n(a + cx),xn'+') 

where we have used the economy's resource 
balance condition and (10). The first-order 
conditions are 

(24) -ncUo + n'l+U Y = 0 

(25) -(a + cx)Uo + (1 + /3)xn4LJy = 0 

From the first stage of the budgeting prob- 
lem, we know that q = U,,/UO. Using (24) 
and (10), we find the price charged by each 
active firm in the unconstrained optimum, 
PU, equal to marginal cost 

(26) Pu = c 

This, of course, is no surprise. Also from 
the first-order conditions, we have 

(27) xu= a 

Finally, with (26), each active firm covers its 
variable cost exactly. The lump sum trans- 
fers to firms then equal an, and therefore 

I = 1 - an, and 

( an) ws( 
pn 
pn 

The number of firms nu is then defined by 

s(cn-) a/d 
(28) = l 

nu 1I- anu 

We can now compare these magnitudes 
with the corresponding ones in the equilib- 
rium or the constrained optimum. The most 
remarkable result is that the output of each 
active firm is the same in the two situations. 
The fact that in a Chamberlinian equilib- 
rium each firm operates to the left of the 
point of minimum average cost has been 
conventionally described by saying that 
there is excess capacity. However, when 
variety is desirable, i.e., when the different 
products are not perfect substitutes, it is not 
in general optimum to push the output of 
each firm to the point where all economies 
of scale are exhausted.7 We have shown in 
one case that is not an extreme one, that the 
first best optimum does not exploit econo- 
mies of scale beyond the extent achieved in 
the equilibrium. We can then easily con- 
ceive of cases where the equilibrium exploits 
economies of scale too far from the point of 
view of social optimality. Thus our results 
undermine the validity of the folklore of ex- 
cess capacity, from the point of view of the 

7Scc David Starrctt. 
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FIGURE I 

unconstrained optimum as well as the con- 
strained one. 

A direct comparison of the numbers of 
firms from (16) and (28) would be difficult, 
but an indirect argument turns out to be 
simple. It is clear that the unconstrained 
optimum has higher utility than the con- 
straincd optimum. Also, the level of lump 
sum income in it is less than that in the lat- 
ter. It must therefore be the case that 

(29) qu < qc = qe 

Further, the difference must be large 
enough that the budget constraint for xo 
and the quantity index y in the uncon- 
strained case must lie outside that in the 
constrained case in the relevant region, as 
shown in Figure 1. Let C be the constrained 
optimum, A the unconstrained optimum, 
and let B be the point where the line joining 
the origin to C meets the indifference curve 
in the unconstrained case. By homotheticity 
the indifference curve at B is parallel to that 
at C, so each of the moves from C to B and 
from B to A increases the value of y. Since 
the value of x is the same in the two optima, 
we must have 

(30) nu > nc = ne 

Thus the unconstrained optimum actually 
allows more variety than the constrained 
optimum and the equilibrium; this is 
another point contradicting the folklore on 
excessive diversity. 

Using (29) we can easily compare the 
budget shares. In the notation we have been 
using, we find s,, e s, as 0(q) e 0, i.e., as 
r(q) e 1 providinig these hold over the en- 

tire relevant range of q. 
It is not possible to have a general result 

concerning the relative magnitudes of x0 in 
the two situations; an inspection of Figure I 
shows this. However, we have a sufficient 
condition: 

Xou = (1 - anu)(l - su) < 1 - su < 1 - SC 

= xocif r(q) > 1 

In this case the equilibrium or the con- 
strained optimum use more of the nu- 
meraire resource than the unconstrained 
optimum. On the other hand, if c(q) = 0 we 
have L-shaped isoquants, and in Figure 1, 
points A and B coincide giving the opposite 
conclusion. 

In this section we have seen that with a 
constant intrasector elasticity of substitu- 
tion, the market equilibrium coincides with 
the constrained optimum. We have also 
shown that the unconstrained optimum has 
a greater number of firms, each of the same 
size. Finally, the resource allocation be- 
tween the sectors is shown to depend on the 
intersector elasticity of substitution. This 
elasticity also governs conditions for 
uniqueness of equilibrium and the second- 
order conditions for an optimum. 

Henceforth we will achieve some analytic 
simplicity by making a particular assump- 
tion about intersector substitution. In re- 
turn, we will allow a more general form of 
intrasector substitution. 

II. Variable Elasticity Case 

The utility function is now 

(31) u = x0 -YjZv(xi)}Y 

with v increasing and concave, 0 < y < 1. 
This is somewhat like assuming a unit inter- 
sector elasticity of substitution. However, 
this is not rigorous since the group utility 
V(x) = Ziv(xi) is not homothetic and there- 
fore two-stage budgeting is not applicable. 

It can be shown that the elasticity of the 
dd curve in the large group case is 
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(32) d logx1 _ _ v'(xi) foranyi 
a logpi XiV"(Xi) 

This differs from the case of Section I in 
being a function of xi. To highlight the sim- 
ilarities and the differences, we define O(x) 
by 

1 + : (x) v'(x) 
)(x) xv " (x) 

Next, setting xi = x and pi = p for i = 1, 
2, .. ., n, we can write the DD curve and the 
demand for the numeraire as 

(34) x = I w(x), XO - 1[1 - w(x)] 

where 

(35) w(X) = yp (x) 
[,yp(x) ? (I - Y) 
xv ' (x) 

p (x) =v(x) 

We assume that 0 < p(x) < 1, and therefore 
have 0 < w(x) < 1. 

Now consider the Chamberlinian equilib- 
rium. The profit-maximization condition 
for each active firm yields the common 
equilibrium price Pe in terms of the common 
equilibrium output xe as 

(36) Pe = c[D + /3(Xe)] 

Note the analogy with (15). Substituting 
(36) in the zero pure profit condition, we 
have xe defined by 

(37) CXe _ 1 
a + cxe I + A(Xe) 

Finally, the number of firms can be calcu- 
lated using the DD curve and the break- 
even condition, as 

(38) ne - W(Xe) 

For uniqueness of equilibrium we once 
again use the conditions that the dd curve is 
more elastic than the DD curve, and that 
entry shifts the DD curve to the left. How- 
ever, these conditions are rather involved 
and opaque, so we omit them. 

Let us turn to the constrained optimum. 

We wish to choose n and x to maximize u, 
subject to (34) and the break-even condition 
px = a + cx. Substituting, we can express u 
as a function of x alone: 

(39) u =y(I - y) -()a + cx- 

The first-order condition defines xc: 

(40) cx- - -= 1 W(xi)xcp(x) 
a + cxc 1 + 3(xc) 'yp(xc) 

Comparing this with (37) and using the 
second-order condition, it can be shown 
that provided p'(x) is one-signed for all x, 

(41) xc Q Xe according as p'(x) 5 0 

With zero pure profit in each case, the 
points (Xe, Pe) and (xc, pc) lie on the same 
declining average cost curve, and therefore 

(42) Pc f? Pe according as xc > Xe 

Next we note that the dd curve is tangent to 
the average cost curve at (Xe, Pe) and the 
DD curve is steeper. Consider the case 
XC > Xe. Now the point (xc, pC) must lie on a 
DD curve further to the right than (Xe, Pe), 
and therefore must correspond to a smaller 
number of firms. The opposite happens if 
XC < xe. Thus, 

(43) nc ? neaccording as xc > 
Xe 

Finally, (41) shows that in both cases that 
arise there, p(xc) < Pp(Xe). Then w(xc) < 

W(Xe), and from (34), 

(44) XOc > XOe 

A smaller degree of intersectoral substitu- 
tion could have reversed the result, as in 
Section I. 

An intuitive reason for these results can 
be given as follows. With our large group 
assumptions, the revenue of each firm is 
proportional to xv'(x). However, the con- 
tribution of its output to group utility is 
v(x). The ratio of the two is p(x). Therefore, 
if p'(x) > 0, then at the margin each firm 
finds it more profitable to expand than what 
would be socially desirable, so Xe > Xc. 
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Given the break-even constraint, this leads 
to there being fewer firms. 

Note that the relevant magnitude is the 
elasticity of utility, and not the elasticity of 
demand. The two are related, since 

(45) x P' (x) 1 
l_ - p(x) (4) p(x) 1+ (3(x) px 

Thus, if p(x) is constant over an interval, so 
is /3(x) and we have 1/(1 + 3) = p, which is 
the case of Section I. However, if p(x) 
varies, we cannot infer a relation between 
the signs of p'(x) and d'(x). Thus the varia- 
tion in the elasticity of demand is not in 
general the relevant consideration. How- 
ever, for important families of utility func- 
tions there is a relationship. For example, 
for v(x) = (k + mx)j, with m > 0 and 0 < 
j < 1, we find that -xv"/v' and xv'/v are 
positively related. Now we would normally 
expect that as the number of commodities 
produced increases, the elasticity of substi- 
tution between any pair of them should in- 
crease. In the symmetric equilibrium, this is 
just the inverse of the elasticity of marginal 
utility. Then a higher x would correspond 
to a lower n, and therefore a lower elasticity 
of substitution, higher -xv"/v' and higher 
xv'/v. Thus we are led to expect that p'(x) > 
0, i.e., that the equilibrium involves fewer 
and bigger firms than the constrained opti- 
mum. Once again the common view con- 
cerning excess capacity and excessive di- 
versity in monopolistic competition is called 
into question. 

The unconstrained optimum problem is 
to choose n and x to maximize 

(46) u = [nv(x)]i[l - n(a + cx)]--- 

It is easy to show that the solution has 

(47) pu= c 

(48) c u = P(xu) 
a +~ cxi, 

(49) nu = ly (49) ~~~a + cxi, 

Then we can use the second-order condition 
to show that 

(50) xu S x, according as p'(x) e 0 

This is in each case transitive with (41), and 
therefore yields similar output comparisons 
between the equilibrium and the uncon- 
strained optimum. 

The price in the unconstrained optimum 
is of course the lowest of the three. As to 
the number of firms, we note 

- (x8) __ __ 

C a + cx a + cx 

and therefore we have a one-way compari- 
son: 

(51) Ifxu < xC,thennu > nc 

Similarly for the equilibrium. These leave 
open the possibility that the unconstrained 
optimum has both bigger and more firms. 
That is not unreasonable; after all the un- 
constrained optimum uses resources more 
efficiently. 

III. Asymmetric Cases 

The discussion so far imposed symmetry 
within the group. Thus the number of varie- 
ties being produced was relevant, but any 
group of n was just as good as any other 
group of n. The next important modifica- 
tion is to remove this restriction. It is easy 
to see how interrelations within the group 
of commodities can lead to biases. Thus, if 
no sugar is being produced, the demand for 
coffee may be so low as to make its produc- 
tion unprofitable when there are set-up 
costs. However, this is open to the objection 
that with complementary commodities, 
there is an incentive for one entrant to pro- 
duce both. However, problems exist even 
when all the commodities are substitutes. 
We illustrate this by considering an industry 
which will produce commodities from one 
of two groups, and examine whether the 
choice of the wrong group is possible.8 

Suppose there are two sets of commodi- 
ties beside the numeraire, the two being per- 
fect substitutes for each other and each hav- 
ing a constant elasticity subutility function. 
Further, we assume a constant budget share 

8For an alternative approach using partial equilib- 
rium methods, see Spence. 
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for the numeraire. Thus the utility function 
is 

(52) 

u n + [PI P2]I/P2}s 

We assume that each firm in group i has a 
fixed cost ai and a constant marginal cost ci. 

Consider two types of equilibria, only 
one commodity group being produced in 
each. These are given by 

(53a) x = a, 1x2=O 
c, O, 

= c(l + 31) 

a,(l + 131) 

q, = p1n,' I= c,(l + f3)l+/(5-) 
u = ss(l 1 _) I -s Iq -s 

(53b) -2 = a2 x,5 = 0 
C2d2' 

P2 = C2(1 + /2) 

a2(1 + /32) 

42 = p2n22 = c2(1 + 2) 

U2 = s(l - ) 2 

Equation (53a) is a Nash equilibrium if 
and only if it does not pay a firm to produce 
a commodity of the second group. The de- 
mand for such a commodity is 

[ 0 for P2 >q1 
X2 S1P2 for P2 < 

Hence we require 

max(P2 - C2)X2 = 5(I - 4) < a2 

or 

(54) S< C2 
s - a2 

Similarly, (53b) is a Nash equilibrium if and 

only if 

(55) q2 < sc- s - a, 

Now consider the optimum. Both the ob- 
jective and the constraint are such as to lead 
the optimum to the production of com- 
modities from only one group. Thus, sup- 
pose ni commodities from group i are being 
produced at levels xi each, and offered at 
prices pi. The utility level is given by 

(56) u = x -Sfxlln+Ol + X2nf+$2 Is 

and the resource availability constraint is 

(57) 
xo + n1(al + clxl) + n2(a2 + C2X2) = 

Given the values of the other variables, the 
level curves of u in (nl, n2) space are con- 
cave to the origin, while the constraint is 
linear. We must therefore have a corner 
optimum. (As for the break-even con- 
straint, unless the two qi = pini-,i are equal, 
the demand for commodities in one group 
is zero, and there is no possibility of avoid- 
ing a loss there.) 

Note that we have structured our ex- 
ample so that if the correct group is chosen, 
the equilibrium will not introduce any 
further biases in relation to the constrained 
optimum. Therefore, to find the constrained 
optimum, we only have to look at the 
values of ui in (53a) and (53b) and see which 
is the greater. In other words, we have to 
see which 4i is the smaller, and choose the 
situation (which may or may not be a Nash 
equilibrium) defined in (53a) and (53b) cor- 
responding to it. 

Figure 2 is drawn to depict the possible 
equilibria and optima. Given all the rele- 
vant parameters, we calculate (41, 12) from 
(53a) and (53b). Then (54) and (55) tell us 
whether either or both of the situations are 
possible equilibria, while a simple compari- 
son of the magnitudes of q1 and 42 tells us 
which is the constrained optimum. In the 
figure, the nonnegative quadrant is split 
into regions in each of which we have one 
combination of equilibria and optima. We 
only have to locate the point (41, 72) in this 
space to know the result for the given 
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FIGURE 2. SOLUTIONS LABELED I REFER TO 
EQUATION (53a); SOLUTIONS LABELEI) 11 

REFER TO EQUATION (53b) 

parameter values. Moreover, we can com- 
pare the location of the points correspond- 
ing to different parameter values and thus 
do some comparative statics. 

To understand the results, we must ex- 
amine how qi depends on the relevant 
parameters. It is easy to see that each is an 
increasing function of ai and ci. We also 
find 

(58) da Iog0 = -log ni 

and we expect this to be large and negative. 
Further, we see from (9) that a higher j3i 
corresponds to a lower own-price elasticity 
of demand for each commodity in that 
group. Thus qi is an increasing function of 
this elasticity. 

Consider initially a symmetric situation, 
with scl/(s - a,) = SC2/(S - a2), I, = /2 
(the region G vanishes then), and suppose 
the point (q-I 42) is on the boundary be- 
tween regions A and B. Now consider a 
change in one parameter, say, a higher own- 
elasticity for commodities in group 2. This 
raises q2, moving the point into region A, 
and it becomes optimal to produce com- 
modities from group 1 alone. However, 
both (53a) and (53b) are possible Nash 

equilibria, and it is therefore possible that 
the high elasticity group is produced in equi- 
librium when the low elasticity one should 
have been. If the difference in elasticities is 
large enough, the point moves into region 
C, where (53b) is no longer a Nash equilib- 
rium. But, owing to the existence of a fixed 
cost, a significant difference in elasticities is 
necessary before entry from group 1 com- 
modities threatens to destroy the "wrong" 
equilibrium. Similar remarks apply to re- 
gions B and D. 

Next, begin with symmetry once again, 
and consider a higher cl or a,. This in- 
creases q1 and moves the point into region 
B, making it optimal to produce the low- 
cost group alone while leaving both (53a) 
and (53b) as possible equilibria, until the 
difference in costs is large enough to take 
the point to region D. The change also 
moves the boundary between A and C up- 
ward, opening up a larger region G, but 
that is not of significance here. 

If both q1 and q2 are large, each group is 
threatened by profitable entry from the 
other, and no Nash equilibrium exists, as in 
regions E and F. However, the criterion of 
constrained optimality remains as before. 
Thus we have a case where it may be neces- 
sary to prohibit entry in order to sustain the 
constrained optimum. 

If we combine a case where c1 > c2 (or 
a, > a2) and /3, > 02, i.e., where commodi- 
ties in group 2 are more elastic and have 
lower costs, we face a still worse possibility. 
For the point (4q, 42) may then lie in region 
G, where only (53b) is a possible equilib- 
rium and only (53a) is constrained opti- 
mum, i.e., the market can produce only a 
low cost, high demand elasticity group of 
commodities when a high cost, low demand 
elasticity group should have been produced. 

Very roughly, the point is that although 
commodities in inelastic demand have the 
potential for earning revenues in excess of 
variable costs, they also have significant 
consumers' surpluses associated with them. 
Thus it is not immediately obvious whether 
the market will be biased in favor of them 
or against them as compared with an opti- 
mum. Here we find the latter, and inde- 
pendent findings of Michael Spence in other 
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contexts confirm this. Similar remarks 
apply to differences in marginal costs. 

In the interpretation of the model with 
heterogenous consumers and social indif- 
ference curves, inelastically demanded com- 
modities will be the ones which are inten- 
sively desired by a few consumers. Thus we 
have an "economic" reason why the market 
will lead to a bias against opera relative to 
football matches, and a justification for 
subsidization of the former and a tax on the 
latter, provided the distribution of income 
is optimum. 

Even when cross elasticities are zero, 
there may be an incorrect choice of com- 
modities to be produced (relative either to 
an unconstrained or constrained optimum) 
as Figure 3 illustrates. Figure 3 illustrates 
a case where commodity A has a more 
elastic demand curve than commodity B; A 
is produced in monopolistically competitive 
equilibrium, while B is not. But clearly, it 
is socially desirable to produce B, since ig- 
noring consumer's surplus it is just mar- 
ginal. Thus, the commodities that are not 
produced but ought to be are those with in- 
elastic demands. Indeed, if, as in the usual 
analysis of monopolistic competition, elimi- 
nating one firm shifts the demand curve for 
the other firms to the right (i.e., increases 
the demand for other firms), if the con- 
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sumer surplus from A (at its equilibrium 
level of output) is less than that from B 
(i.e., the cross hatched area exceeds the 
striped area), then constrained Pareto opti- 
mality entails restricting the production of 
the commodity with the more elastic 
demand. 

A similar analysis applies to commodities 
with the same demand curves but different 
cost structures. Commodity A is assumed to 
have the lower fixed cost but the higher 
marginal cost. Thus, the average cost curves 
cross but once, as in Figure 4. Commodity 
A is produced in monopolistically com- 
petitive equilibrium, commodity B is not 
(although it is just at the margin of being 
produced). But again, observe that B should 
be produced, since there is a large con- 
sumer's surplus; indeed, since were it to be 
produced, B would produce at a much 
higher level than A, there is a much larger 
consumer's surplus. Thus if the government 
were to forbid the production of A, B 
would be viable, and social welfare would 
increase. 

In the comparison between constrained 
Pareto optimality and the monopolistically 
competitive equilibrium, we have observed 
that in the former, we replace some low 
fixed cost-high marginal cost commodities 
with high fixed cost-low marginal cost com- 
modities, and we replace some commodities 
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with elastic demands with commodities with 
inelastic demands. 

IV. Concluding Remarks 

We have constructed in this paper some 
models to study various aspects of the rela- 
tionship between market and optimal re- 
source allocation in the presence of some 
nonconvexities. The following general con- 
clusions seem worth pointing out. 

The monopoly power, which is a neces- 
sary ingredient of markets with noncon- 
vexities, is usually considered to distort 
resources away from the sector concerned. 
However, in our analysis monopoly power 
enables firms to pay fixed costs, and entry 
cannot be prevented, so the relationship be- 
tween monopoly power and the direction of 
market distortion is no longer obvious. 

In the central case of a constant elasticity 
utility function, the market solution was 
constrained Pareto optimal, regardless of 
the value of that elasticity (and thus the 
implied elasticity of the demand functions). 
With variable elasticities, the bias could go 
either way, and the direction of the bias de- 
pended not on how the elasticity of demand 
changed, but on how the elasticity of utility 
changed. We suggested that there was some 
presumption that the market solution 
would be characterized by too few firms in 
the monopolistically competitive sector. 

With asymmetric demand and cost condi- 
tions we also observed a bias against com- 
modities with inelastic demands and high 
costs. 

The general principle behind these results 
is that a market solution considers profit at 
the appropriate margin, while a social opti- 
mum takes into account the consumer's sur- 
plus. However, applications of this principle 
come to depend on details of cost and de- 
mand functions. We hope that the cases 

presented here, in conjunction with other 
studies cited, offer some useful and new 
insights. 
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