Appendix A: Ranking Methodology for Table 2

To sort PhD programs according to women’s success compared to men’s, we used eight metrics for each department:

1) Share women: the share of all first-years in the department, from 1994-2012, who are women.

2) Change in share women: the percent change in the share of women among departmental PhD graduates from 1994-2005 to 2006-2017.

3) Retention: the share of women among graduates from 1999-2017 over the share of women among first year students from 1994-2012.

4) Doctoral Placement: women’s placement rate, relative to men’s, into tenure-track faculty roles in any PhD-granting department.

5) Placement Rank: the average US News rank for women’s economics doctoral placements, relative to men’s placements from the department. For consistency of sign with other metrics, we replace rank with 100-(US News rank), so that the “best” programs are ranked 99. Programs without a US News ranking are assigned a value of zero on this scale.

6) Top 55: the ratio between women’s and men’s average number of publications in top 55 journals within seven years after graduating with a PhD.

7) Top 5: the ratio between women’s and men’s average number of publications in top 5 journals within 7 years after graduating with a PhD.

8) Promotion: the relative probability that a woman, compared to a man, who graduated from the program before 2011 is observed as an associate or full professor within 12 years after receiving her/his PhD.

We then converted each of these relative rates into z-scores with respect to the distribution of 22 schools, and calculated the mean z-score over the eight metrics. (For the four schools where fewer than 10 women graduate before 2011, we treat the promotion measure as missing.) We first looked for jumps in the mean z-scores to establish natural groupings. On the “less equal” side of the distribution, there were two large jumps of .2 standard deviations each. These served as natural division points into the “less equal” (<-.2 SDs) and “least equal” (<-.5 SDs) groups. There were fewer large shifts in the “more equal” side of the distribution, so we identified smaller shifts in the same vicinity as the “less equal” thresholds. After sorting the PhD programs into one of the five categories, we assigned anonymous IDs from A-V based on the average z-score, with A being the highest.
Appendix A: Ranking Methodology for Table 2

To sort PhD programs according to women’s success compared to men’s, we used eight metrics for each department:

1) Share women: the share of all first-years in the department, from 1994-2012, who are women.

2) Change in share women: the percent change in the share of women among departmental PhD graduates from 1994-2005 to 2006-2017.

3) Retention: the share of women among graduates from 1999-2017 over the share of women among first year students from 1994-2012.

4) Doctoral Placement: women’s placement rate, relative to men’s, into tenure-track faculty roles in any PhD-granting department.

5) Placement Rank: the average US News rank for women’s economics doctoral placements, relative to men’s placements from the department. For consistency of sign with other metrics, we replace rank with 100-(US News rank), so that the “best” programs are ranked 99. Programs without a US News ranking are assigned a value of zero on this scale.

6) Top 55: the ratio between women’s and men’s average number of publications in top 55 journals within seven years after graduating with a PhD.

7) Top 5: the ratio between women’s and men’s average number of publications in top 5 journals within 7 years after graduating with a PhD.

8) Promotion: the relative probability that a woman, compared to a man, who graduated from the program before 2011 is observed as an associate or full professor within 12 years after receiving her/his PhD.

We then converted each of these relative rates into z-scores with respect to the distribution of 22 schools, and calculated the mean z-score over the eight metrics. (For the four schools where fewer than 10 women graduate before 2011, we treat the promotion measure as missing.) We first looked for jumps in the mean z-scores to establish natural groupings. On the “less equal” side of the distribution, there were two large jumps of .2 standard deviations each. These served as natural division points into the “less equal” (<.2 SDs) and “least equal” (<.5 SDs) groups. There were fewer large shifts in the “more equal” side of the distribution, so we identified smaller shifts in the same vicinity as the “less equal” thresholds. After sorting the PhD programs into one of the five categories, we assigned anonymous IDs from A-V based on the average z-score, with A being the highest.