Appendix - Derivation of the Likelihood Function

First note that if driver i stops after trip t, he did not stop after the first $t - 1$ trips. The probability of observing driver i stop after the t^{th} trip conditional on a particular value of T_{ij} is

$$Q_{ijt}|T_{ij} = (1 - (P_{ijt}|T_{ij})) \prod_{k=1}^{t-1} P_{ijk}|T_{ij}$$

(A.1) $$= (1 - \Phi[X_{ijt}\beta + \delta I[T_{ij} > Y_{ij}]] \prod_{k=1}^{t-1} \Phi[X_{ijk}\beta + \delta I[T_{ij} > Y_{ijk}]]$$

In order to derive the unconditional shift probability, I use the distribution of T_{ij} to “integrate out” the random component in the reference level (μ_{ij} in equation (8)) as follows. For a driver who stops after the t^{th} trip, there are $t+1$ possible intervals for the reference level of income to fall relative to accumulated income after each trip during the shift. The reference level of income may be

- less than Y_{ij1},

- in one of the t-1 intervals $Y_{ij(k-1)} < T_{ij} \leq Y_{ijk}$, or

- above Y_{ijt}.

Suppose driver i on shift j stops after trip t_{ij}. Using the information on accumulated income after each trip on a shift, the unconditional shift probability associated with driver i on shift j is

$$Q_{ij} = (Q_{ijt_{ij}}|T_{ij} \leq Y_{ij1}) \cdot Pr(T_{ij} \leq Y_{ij1})$$

$$+ \sum_{h=2}^{t_{ij}} [(Q_{ijt_{ij}}|Y_{ij(h-1)} < T_{ij} < Y_{ijh}) \cdot Pr(Y_{ij(h-1)} \leq T_{ij} < Y_{ijh})]$$
The conditional shift probabilities in this expression follow from equation A.1:

- The probability of observing a driver stop after trip \(t_{ij} \) conditional on the reference income level being less than income after the first trip is

\[
Q_{ijt_{ij}}| (T_{ij} \leq Y_{ij1}) = (1 - \Phi[X_{ijt_{ij}} \beta]) \cdot \prod_{k=1}^{t_{ij}-1} \Phi[X_{ijk} \beta].
\]

- The probability of observing a driver stop after trip \(t_{ij} \) conditional on the reference income level being in the one of the \(t_{ij} - 1 \) possible intervals \(Y_{ij(h-1)} \) to \(Y_{ijh} \) is

\[
Q_{ijt_{ij}}| (Y_{ij(h-1)} < T_{ij} \leq Y_{ijh}) = (1 - \Phi[X_{ijt_{ij}} \beta]) \cdot \prod_{k=1}^{h-1} \Phi[X_{ijk} \beta + \delta] \cdot \prod_{k=h}^{t_{ij}-1} \Phi[X_{ijk} \beta].
\]

- The probability of observing a driver stop after trip \(t \) conditional on the reference income level being greater than income after trip \(t \) is

\[
Q_{ijt_{ij}}| (T_{ij} > Y_{ijt}) = (1 - \Phi[X_{ijt_{ij}} \beta + \delta]) \cdot \prod_{k=1}^{t_{ij}-1} \Phi[X_{ijk} \beta + \delta].
\]

It remains to write the probabilities of the reference income falling in each of the \(t + 1 \) intervals. These probabilities follow from the definition of \(T_{ij} \) in equation (8):

- The probability that the reference income level is no greater than income after the first trip is

\[
Pr(T_{ij} \leq Y_{ij1}) = \Phi[(Y_{ij1} - \theta_i)/\sigma].
\]

- The probability that the reference income level lies in one of the \(t - 1 \) possible intervals \(Y_{ij(k-1)} \) to \(Y_{ijk} \) is

\[
Pr(Y_{ij(k-1)} < T_{ij} \leq Y_{ijk}) = Pr(T_{ij} \leq Y_{ijk}) - Pr(T_{ij} \leq Y_{ij(k-1)})
\]

\[
= \Phi[(Y_{ijk} - \theta_i)/\sigma] - \Phi[(Y_{ij(k-1)} - \theta_i)/\sigma].
\]
The probability that the reference income level is greater than the income after trip t is

$$Pr(T_{ij} > Y_{ijt}) = 1 - \Phi[(Y_{ijt} - \theta_i)/\sigma].$$

The probabilities defined in equations A.3-A.8 specify the components of the unconditional probability Q_{ij}, defined in equation A.2, for driver i observed to end shift j after trip t_{ij}. Assuming each shift for a driver is an independent observation, the likelihood function appropriate to this model is defined as

$$L = \prod_{i=1}^{n} \prod_{j=1}^{m_i} Q_{ij},$$

where n denotes the number of drivers in the sample and m_i is the number of shifts for driver i in the sample.