Online Appendix for “Loss Leading as an Exploitative Practice”

Zhijun Chen Patrick Rey

January, 2012
A Proof of Proposition 1

Suppose first that \(v_{AL} \geq w_S \), that is, \(r_{AL} \leq w_{AL} - w_S \) (“regime L”). We first show that, without loss of generality, we can focus on prices such that \(\tau \in [0, v_{AL}] \). If \(\tau > v_{AL} \) (i.e., \(w_S - w_L + r_L > w_{AL} - r_{AL} \), or \(r_L > r'_L \equiv (w_{AL} - r_A - (w_S - w_L))/2 \)), there are no one-stop shoppers: active consumers buy \(A \) from \(L \) and \(B_S \) from \(S \), and do so as long as \(2s < v_A + w_S \); however, keeping \(r_A \) constant, decreasing \(r_L \) to \(r'_L \) such that \(\tau' = v'_L \) does not affect the number of active consumers (since \(v_A \) does not change), who still visit both stores as before. If instead \(\tau < 0 \) (i.e., \(r_L < -w_S - w_L \)), there are no multi-stop shoppers: active consumers only visit \(L \), and do so as long as \(s < v_{AL} = w_{AL} - r_{AL} \); however, keeping \(r_{AL} \) constant, increasing \(r_L \) to \(r'_L = -(w_S - w_L) \) yields \(\tau' = 0 \) without affecting consumer behavior. The condition \(\tau \geq 0 \) moreover ensures that prospective multi-stop shoppers are indeed willing to buy \(A \) on a stand-alone basis: \(w_S \leq v_{AL} = w_{AL} - r_A - r_L \) implies \(r_A \leq w_{AL} - w_S - r_L = w_{AL} - w_L - \tau < w_A \).

Thus, consumers whose shopping cost lies in \([0, \tau] \) buy \(A \) from \(L \) (and \(B_S \) from \(S \)), whereas those with a shopping cost in \([\tau, v_{AL}] \) buy both \(A \) and \(B_L \) from \(L \). Using \(v_{AL} = w_{AL} - r_{AL} \) and \(\tau = w_S - w_L + r_L \), \(L \)'s optimization program within regime \(L \) can thus be expressed as:

\[
\max_{r_{AL}, r_L} \Pi_L (r_{AL}, r_L) = r_{AL} F(w_{AL} - r_{AL}) - r_L F(w_S - w_L + r_L),
\]

subject to \(r_{AL} \leq w_{AL} - w_S \)

where \(\Pi_L (r_{AL}, r_L) \) is additively separable and moreover strictly quasi-concave\(^1\) in \(r_{AL} \) and \(r_L \). \(L \)'s optimization program can thus be decomposed into:

\[
\max_{r_{AL}} r_{AL} F(w_{AL} - r_{AL}),
\]

s. t. \(r_{AL} \leq w_{AL} - w_S \)

which leads to \(r_{AL} = \min \{r_{AL}^m, w_{AL} - w_S\} \) and \(v_{AL} = \max \{v_{AL}^m, w_S\} \), and

\[
\min_{r_L} r_L F(w_S - w_L + r_L),
\]

which yields the first-order condition:

\[
r^*_L = -h(w_S - w_L + r^*_L) = -h(\tau^*) < 0.
\]

\(^1\)The derivative w.r.t. \(r_{AL} \) is of the form \(f(w_{AL} - r_{AL}) \phi (r_{AL}) \), where \(\phi (r_{AL}) \equiv h(w_{AL} - r_{AL}) - r_{AL} \) is strictly decreasing. A similar reasoning applies below to the other profit functions of \(L \) and \(S \).
Using $r^*_L = \tau^* - (w_S - w_L) = -h(\tau^*)$, the optimal threshold τ^* is given by:

$$
\tau^* \equiv l^{-1}(w_S - w_L) > 0. \quad (3)
$$

Note that this threshold satisfies $\tau^* < v^m_{AL}$. To see this, take instead v_{AL} and τ as control variables and rewrite L's profit as:

$$
\Pi_L(v_{AL}, \tau) = r_{AL} F(v_{AL}) - r_L F(\tau)
= (w_{AL} - v_{AL}) F(v_{AL}) + (w_S - w_L - \tau) F(\tau).
$$

Then we have $v^m_{AL} = \arg \max_v (w_{AL} - v) F(v) > \arg \max_v (w_S - w_L - v) F(v) = \tau^*$, since $w_{AL} \geq l(w_S) (> w_S \geq w_S - w_L).

Suppose now that $v_{AL} < w_S$, that is, $r_{AL} > w_{AL} - w_S$ ("regime S"). L then only attracts multi-stop shoppers, who buy A from it as long as $s \leq v_A = w_A - r_A$. L thus obtains:

$$
\Pi_L = r_A F(v_A) = r_A F(w_A - r_A),
$$

which is maximal for r^m_A and $v^m_A = w_A - r^m_A$, characterized by:

$$
r^m_A = h(v^m_A), \quad v^m_A = l^{-1}(w_A).
$$

L's profit in regime S is thus at most:

$$
\Pi_A^m \equiv r^m_A F(v^m_A).
$$

As already noted, regime L is clearly preferable when $v^m_{AL} \geq w_S$, since it then gives L more profit than the monopolistic level Π^m_{AL}, which itself is greater than Π_A^m:

$$
\Pi^m_{AL} = \max_r r F(w_{AL} - r) > \max_r r F(w_A - r) = \Pi_A^m,
$$

since $w_{AL} > w_A$. We now show that regime L, and the associated loss-leading strategy, remains profitable when $w_{AL} \geq w_S > v^m_{AL}$, where it involves $r^*_L < 0$ and $\tilde{r}^*_A = w_{AL} - w_S$. To see this, fixing \tilde{r}^*_A and using r_A rather than r_L as the optimization variable, the margin on B_L and the shopping cost threshold can be expressed as:

$$
\tau_L = \tilde{r}^*_A - r_A = w_{AL} - w_S - r_A, \quad \tau = w_S - w_L + r_L = w_{AL} - w_L - r_A = w_A - r_A.
$$
The maximum profit achieved in regime L, $\hat{\Pi}_L^*$, can then be written as:

$$\hat{\Pi}_L^* = \tilde{r}_{AL}^* (F'(\tilde{v}_{AL}^*) - F'(\tau^*)) + r_A^* F(\tau^*)$$

$$= (w_{AL} - w_S) (F'(w_S) - F'(\tau^*)) + r_A^* F(\tau^*)$$

$$= \max_{r_A} \{(w_{AL} - w_S) (F'(w_S) - F'(w_A - r_A)) + r_A^* F(w_A - r_A)\}$$

$$\geq (w_{AL} - w_S) (F'(w_S) - F'(w_A - r_A^m)) + r_A^m F(w_A - r_A^m)$$

$$= (w_{AL} - w_S) (F'(w_S) - F'(v_{AL}^m)) + \Pi_A^m.$$

Since $w_S > v_{AL}^m = l^{-1}(w_{AL}) > l^{-1}(w_A) = v_A^m$, $\hat{\Pi}_L^* \geq \Pi_A^m$ whenever $w_{AL} \geq w_S$.

Conversely, when $w_{AL} < w_S$, then L can indeed achieve Π_A^m in regime S (e.g., $r_L = 0$ and $r_A = r_A^m$ satisfy $r_{AL} = r_A^m > 0 > w_{AL} - w_S$, and thus $v_{AL} < w_S$), and we have:

$$\hat{\Pi}_L^* = (w_{AL} - w_S) (F'(w_S) - F'(w_A - \tilde{r}_A^*)) + \tilde{r}_A^* F(w_A - \tilde{r}_A^*)$$

$$< \tilde{r}_A^* F(w_A - \tilde{r}_A^*)$$

$$\leq \Pi_A^m,$$

where the first inequality stems from $w_S > w_{AL} (> w_A - \tilde{r}_A^*)$.

Finally, in the limit case where $w_{AL} = w_S$, using B_L as a loss leader amounts to monopolizing product A. Offering $v_{AL} = w_S$ requires $r_{AL} = w_{AL} - v_{AL} = 0$, or $r_A = -r_L$, and the optimal subsidy thus maximizes $-r_L F'(\tau) = -r_L F(w_S - w_S + r_L) = r_A F(w_A - r_A)$.

Therefore, in both cases L obtains (from multi-stop shoppers) the monopoly margin on A, and makes no profit (from one-stop shoppers) on the bundle $A - B_L$ (since either it charges them $r_{AL} = 0$, or they go to S). Finally, while the loss-leading strategy may yield a lower price for B_L (in the monopolization scenario, L may actually stop carrying B_L), this does not affect multi-stop shoppers (who do not buy B_L from L), whereas one-stop shoppers are indifferent between buying A and B_L from L or B_S only from S.

B Proof of Proposition 2

We derive here the conditions under which the loss leading outcome ($\hat{\tau}_{AL}^* = r_{AL}^m$ and $\hat{\tau}_L^* = -\hat{\tau}_S^* = -h(\hat{\tau}^*)$, where $\hat{\tau}^* = j^{-1}(w_S - w_L)$) forms a Nash equilibrium, before checking the uniqueness of the equilibrium. To attract one-stop shoppers, L must offer a better value
than S: \(^2\)
\[
v_{AL}^m \geq \hat{v}^*_S \equiv w_S - h(\hat{\tau}^*).
\]
This condition implies $v_{AL}^m \geq \hat{v}^*_S > \hat{v}^*_S - \hat{v}^*_L = \hat{\tau}^*$, which in turn implies $w_{AL} > w_S$:
\[
w_{AL} = l(v_{AL}^m) \geq l(\hat{v}^*_S) = \hat{v}^*_S + h(\hat{v}^*_S) = w_S - h(\hat{\tau}^*) + h(\hat{v}^*_S) > w_S.
\]

Moreover, while L has no incentive to exclude its rival, since it earns more profit than a pure monopolist, S may want to attract one-stop shoppers by reducing r_S so as to offer $v_S \geq v_{AL}^m$. Such a deviation allows S to attract all consumers (one-stop or multi-stop shoppers) with shopping costs $s \leq v_S$ and thus yields a profit $\Pi_S^d(v_S) \equiv r_S F(v_S) = (w_S - v_S) F(v_S)$. A simple revealed argument yields $\arg \max_v \Pi_S^d(v) \leq v_{AL}^m \equiv \arg \max_v (w_{AL} - v) F(v)$, since $w_S < w_{AL}$; as $\Pi_S^d(v_S)$ is quasi-concave in v_S, increasing v_S further above v_{AL}^m would thus reduce S’s profit. It is therefore optimal for S to offer precisely $v_S^d = v_{AL}^m$ (or slightly above v_{AL}^m, if one-stop shoppers are indifferent between the two stores in this case), which gives S a profit equal to $\Pi_S^d(v_{AL}^m) = (w_S - v_{AL}^m) F(v_{AL}^m)$.

The loss-winning outcome is immune to such a deviation if and only if
\[
\hat{\Pi}_S^* \equiv h(\hat{\tau}^*) F(\hat{\tau}^*) \geq \hat{\Pi}_S^d \equiv (w_S - v_{AL}^m) F(v_{AL}^m).
\]
This condition can be further written as:
\[
\Psi(w_{AL}; w_S) \equiv (w_S - v_{AL}^m) F(v_{AL}^m) \leq \hat{\Pi}_S^*,
\]
where $v_{AL}^m = l^{-1}(w_{AL})$ and thus satisfies $v_{AL}^m + h(v_{AL}^m) = w_{AL}$. Therefore:
\[
\frac{\partial \Psi}{\partial w_{AL}}(w_{AL}; w_S) = \left((w_S - v_{AL}^m) f(v_{AL}^m) - F(v_{AL}^m)\right) \frac{dv_{AL}^m}{dw_{AL}}
\]
\[
= \left(w_S - v_{AL}^m - h(v_{AL}^m)\right) \frac{f(v_{AL}^m)}{1 + h'(v_{AL}^m)}
\]
\[
= \left(w_S - w_{AL}\right) \frac{f(v_{AL}^m)}{1 + h'(v_{AL}^m)}.
\]
It follows that, in the range $w_{AL} \geq w_S$, $\Psi(w_{AL}; w_S)$ decreases with w_{AL} (and strictly so for $w_{AL} > w_S$). Thus, condition (5) amounts to $w_{AL} \geq \hat{w}_{AL}(w_S, w_L)$, where $\hat{w}_{AL}(w_S, w_L)$ is the unique solution to $\Psi(w_{AL}; w_S) = \hat{\Pi}_S^*$. To show that this solution exists and

\(^2\)As before, this is equivalent to $w_{AL} - w_L - \hat{\tau}^*_A = v_{AL}^m - \hat{v}^*_L \geq \hat{v}^*_S - \hat{v}^*_L = \hat{\tau}^* (> 0)$, which implies that multi-stop shoppers are indeed willing to buy A when visiting L. Moreover, this condition also implies $v_{AL}^m > \hat{v}^*_S - \hat{v}^*_L = \hat{\tau}^* (> 0)$.

4
lies above \(w_S \), note first that \(\Psi \) becomes negative for \(w_{AL} > l(w_S) \) (since then \(v_{AL}^m = l^{-1}(w_{AL}) > w_S \)), and that for \(w_{AL} = w_S \), \(\Psi(w_{AL}, w_S) = (w_{AL} - v_{AL}^m) F(v_{AL}^m) = \Pi_{AL}^m = \max_v (w_{AL} - v) F(v) \); since \(w_{AL} > w_S - w_L + \hat{\tau}_L^* \), this exceeds \(\Pi_S^* = \max_\tau (w_S - w_L + \hat{\tau}_L^* - \tau) F(\tau) \).

Finally, in the range \(w_{AL} > w_S (> w_S - \hat{\tau}_L^*) \), a simple revealed argument yields:

\[
\hat{\tau}^* = \arg \max_v (w_S - \hat{\tau}_L^* - \tau) F(\tau) < v_{AL}^m = \arg \max_v (w_{AL} - v) F(v).
\]

Therefore, (5), which is equivalent to:

\[
v_{AL}^m \geq w_S - \frac{h(\hat{\tau}^*) F(\hat{\tau}^*)}{F(v_{AL}^m)}, \tag{7}
\]

implies (4). The two conditions (4) and (5) thus boil down to \(w_{AL} \geq \hat{w}_{AL}(w_S, w_L) \).

It remains to show that \(\hat{w}_{AL}(w_S, w_L) \) increases with \(w_S \). Differentiating \(\hat{w}_{AL}(w_S, w_L) \) with respect to \(w_S \) yields:

\[
\frac{\partial \hat{w}_{AL}}{\partial w_S} = \frac{\frac{\partial \Psi}{\partial w_S} - \frac{\partial \Pi_S^*}{\partial w_S}}{\frac{\partial \Psi}{\partial w_{AL}}},
\]

where the denominator is positive in the relevant range, whereas the numerator is equal to:

\[
\frac{\partial \Psi}{\partial w_S} - \frac{\partial \Pi_S^*}{\partial w_S} = F(v_{AL}^m) - \frac{d \left(h(\hat{\tau}^*) F(\hat{\tau}^*)\right)}{d \hat{\tau}^*} \frac{\partial \hat{\tau}^*}{\partial w_S}
= F(v_{AL}^m) - \frac{1 + h'(\hat{\tau}^*)}{1 + 2h'(\hat{\tau}^*)} F(\hat{\tau}^*),
\]

which is positive since \(v_{AL}^m > \hat{\tau}^* \).

We now show that no other equilibrium exists when \(w_{AL} \geq \hat{w}_{AL}(w_S, w_L) \). First, we turn to regime \(S \), in which one-stop shoppers patronize \(S (v_{AL} < v_S) \), and show that there is no such equilibrium when \(w_{AL} > w_S \). In this regime, \(L \) faces only a demand \(F(v_A) \) for \(A \) from multi-stop shoppers, where \(v_A = w_A - r_A \), and thus makes a profit equal to \(r_A F(v_A) \). \(L \) could however deviate and attract one-stop shoppers by reducing \(r_L \) (keeping \(r_A \) and thus \(v_A \) constant) so as to offer \(v_{AL}^l = v_S \) (or slightly above \(v_S \)). Doing so would not change the number of multi-stop shoppers, since \(\tau' = v_S - v_L = v_{AL}^l - v_L = v_{AL}^l = v_A \), and \(L \) would obtain the same margin, \(r_A \), from those consumers. But it would now attract one-stop shoppers (those for which \(v_A \leq s \leq w_{AL} = v_S \), from which \(L \) could earn a total margin \(r_{AL}^l = w_{AL} - v_{AL}^l = w_{AL} - v_S = w_{AL} - w_S + r_S \). Since any candidate equilibrium requires \(r_S \geq 0 \), the deviation would be profitable when \(w_{AL} > w_S \).

Second, consider the boundary between the two regimes, in which one-stop shoppers are indifferent between visiting \(L \) or \(S (v_{AL} = v_S) \). Note that there must exist some
active consumers, since either retailer can profitably attract consumers by charging a small positive margin; therefore, we must have \(v_{AL} = v_S > 0 \). Suppose that all active consumers are multi-stop shoppers (in which case \(L \) only sells \(A \) while \(S \) sells \(B_S \) to all consumers), which requires \(v_{AL} = v_S \leq \tau \). Applying the same logic as in the beginning of Appendix A, we can without loss of generality focus on the case \(v_{AL} = v_S = \tau \). It is then profitable for \(L \) to transform some multi-stop shoppers into one-stop shoppers, by reducing its margin on \(B_L \) to \(r'_L = w_L - \varepsilon > 0 \) and increasing \(r_A \) by \(\varepsilon \), so as to keep \(v_{AL} \) constant: doing so does not affect the total number of active consumers, but transforms those whose shopping cost lies between \(\tau' = v_S - v'_L = \tau - \varepsilon \) and \(\tau \) into one-stop shoppers. While \(L \) obtains the same margin on them (since \(r'_{AL} = r_{AL} \)), it now obtains a higher margin \(r'_A > r_A \) on the remaining multi-stop shoppers.

Therefore, some consumers must visit a single store, and by assumption must be indifferent between visiting either store (\(v_{AL} = v_S \)). Suppose now some one-stop shoppers visit \(S \). Since \(S \) can avoid making losses, we must then have \(r_S \geq 0 \). But then, \(v_{AL} = v_S \) implies \(r_{AL} = r_S + w_{AL} - w_S > 0 \) and, thus, it would be profitable for \(L \) to reduce \(r_{AL} \) slightly, so as to attract all one-stop shoppers. Therefore, all one-stop shoppers must go to \(L \) if \(r_{AL} > 0 \). Conversely, we must have \(r_S \leq 0 \), otherwise \(S \) would benefit from slightly reducing its margin so as to attract all one-stop shoppers. Therefore, in any candidate equilibrium such that \(v_{AL} = v_S > 0 \), either:

- There are some multi-stop shoppers (i.e. \(\tau > 0 \)) and thus \(r_S = 0 \); but then, slightly increasing \(r_S \) would allow \(S \) to keep attracting some multi-stop shoppers and obtain a positive profit, a contradiction.

- Or, all consumers buy both products from \(L \), which requires \(r_L \leq r_S - (w_S - w_L) \leq -(w_S - w_L) < 0 \). But then, increasing \(r_L \) to \(r'_L = r_S - (w_S - w_L) + \varepsilon \) and reducing \(r_A \) by the same amount (so as to keep \(r_{AL} \) constant) would lead those consumers with \(s < \tau' = \varepsilon \) to buy \(B_S \) from \(S \), allowing \(L \) to avoid granting them the subsidy \(r_L \).

It follows that there is no equilibrium such that \(v_{AL} = v_S \).

Finally, loss leading (in which \(L \) not only offers, but actually sells below cost) can only arise when \(L \) sells to one-stop shoppers, which thus requires \(v_{AL} \geq v_S \). But this cannot be an equilibrium when \(w_{AL} < \tilde{w}_{AL}(w_S, w_L) \), since: (i) in the range \(v_{AL} > v_S \), the
only such candidate is the above described loss-leading outcome, which requires \(w_{AL} \geq \hat{w}_{AL} (w_S, w_L) \); and (ii) as just discussed, no equilibrium exists in the boundary case \(v_{AL} = v_S \).

C Proof of Proposition 3

Stackelberg leadership.

Suppose that \(L \) benefits from a first-mover advantage: it sets its prices first, and then, having observed these prices, \(S \) sets its own price. Retail prices are often strategic complements, and it is indeed the case here for \(S \) in the \(B \) segment: as noted before, \(S \)’s best response, \(\hat{r}_S (r_L) \), increases with \(r_L \). Thus, in the case of “normal competition” in market \(B \), \(L \) would exploit its first-mover advantage by increasing its price for \(B_L \), so as to encourage its rival to increase its own price and relax the competitive pressure. In contrast, here \(L \) has an incentive to decrease \(r_L \) even further. This leads \(S \) to decrease its own price, which allows \(L \) to raise the price for \(F \). To see this, note that \(L \)’s Stackelberg profit from a loss-leading strategy can be written as:

\[
\Pi^L_S (r_L) = \Pi^m_{AL} - r_L F (\hat{r} (r_L)) = \Pi^m_{AL} - r_L F (w_S - w_L + r_L - \hat{r}_S (r_L)).
\]

Denoting by \(r^*_L \) the optimal Stackelberg margin and using \(\hat{r} (r_L) = \hat{r}^*_L \), where \(\hat{r}^*_L \) and \(\hat{r}^*_S \) are the equilibrium margins when \(L \) moves simultaneously with \(S \), we have:

\[
-r^*_L F (w_S - w_L + r^*_L - \hat{r}_S (r^*_L)) \geq -\hat{r}^*_S F (w_S - w_L + \hat{r}_S (\hat{r}_L))
\]

\[
\geq -r^*_L F (w_S - w_L + r^*_L - \hat{r}^*_S),
\]

where the second inequality stems from the fact that \(\hat{r}^*_L \) constitutes \(L \)’s best response to \(r^*_S \). Since \(-r^*_L > 0 \) and \(F (\cdot) \) and \(\hat{r}_S (\cdot) \) are both increasing, this in turn implies \(r^*_L \leq \hat{r}^*_L \).

This inequality is moreover strict, since (using \(\hat{r} (\hat{r}^*_L) = \hat{r}^*_L \)):

\[
(\Pi^L_S)' (\hat{r}^*_L) = -F (\hat{r}^*_S) - \hat{r}^*_S f (\hat{r}^*_S) (1 - \hat{r}^*_S (\hat{r}^*_L)) = \hat{r}^*_S f (\hat{r}^*_S) \hat{r}_S (\hat{r}^*_L) < 0.
\]

Thus, \(L \) sells the competitive product \(B_L \) further below-cost, compared with what it would do in the absence of a first-mover advantage: \(r^*_L < \hat{r}^*_L \).

Entry accommodation.

Suppose now that the presence of \(S \) is uncertain. To capture this possibility, assume that \(S \) incurs a fixed cost for entering the market, \(\gamma \), which is ex ante distributed according to a cumulative distribution function \(F_\gamma (\cdot) \), and consider the following timing:
• In stage 1, \(L \) chooses its prices.

• In stage 2, the entry cost is realized, and \(S \) chooses whether to enter; if it enters, it then sets its own price.

If entry were certain, maximizing its Stackelberg profit would lead \(L \) to adopt \(r_L^S \). But now, \(S \) enters only when its best response profit, \(\hat{\Pi}_S (r_L) \), exceeds the realized cost \(\gamma \), which occurs with probability \(\rho (r_L) \equiv F_\gamma (\hat{\Pi}_S (r_L)) \). \(L \)’s ex ante profit is therefore equal to

\[
\hat{\Pi}_L^S (r_L) = \Pi_{AL}^m + \rho (r_L) \Pi_L^S (r_L).
\]

The optimal margin, \(\hat{\rho}_L \), thus satisfies

\[
\rho (\hat{\rho}_L) \Pi_L^S (\hat{\rho}_L) \geq \rho (r_L) \Pi_L^S (r_L) \geq \rho (r_L) \Pi_L^S (\hat{\rho}_L),
\]

which implies

\[
\rho (\hat{\rho}_L) \geq \rho (r_L).
\]

Since \(F_\gamma \) and \(\hat{\Pi}_S \) are both increasing in \(r_L \), so is \(\rho \) and thus \(\hat{\rho}_L \geq r_L^S \). This inequality is moreover strict, since

\[
\left(\hat{\Pi}_L^S \right)' (r_L^S) = \rho' (r_L^S) \Pi_L^S (r_L^S) + \rho (r_L^S) \left(\Pi_L^S \right)' (r_L^S) = \rho' (r_L^S) \Pi_L^S (r_L^S) > 0.
\]

Therefore, when \(L \)’s comparative advantage leads it to adopt a loss-leading strategy, it limits the subsidy on \(B \) so as to increase the likelihood of entry: \(\hat{r}_L^S > r_L^S \).

\[\textbf{D Proof of Proposition 4}\]

In the equilibrium where \(L \) attracts one-stop shoppers in the absence of a ban, \(L \) must offer a higher value than \(S \): \(v_{AL} = v_{AL}^m > \hat{v}_S^* = w_S - \hat{r}_S^* \), and \(S \) must moreover not be tempted to deviate and attract one-stop shoppers, which boils down to \(\hat{\Pi}_S^d = h (\hat{\tau}^*) F (\hat{\tau}^*) \geq \hat{\Pi}_S^d = (w_S - v_{AL}^m) F (v_{AL}^m) \). If \(L \) keeps attracting one-stop shoppers (i.e., \(v_{AL} > v_S \)) when loss leading is banned, then the unique candidate equilibrium is \(r_{AL} = r_{AL}^m, r_L = 0 \) and \(r_S^d = h (\hat{\tau}^*) \), where \(\hat{\tau}^* = l^{-1} (w_S - w_L) \).

We show now this candidate equilibrium prevails when loss-leading would arise if below-cost pricing were allowed. Note that, since \(S \) increases its price (i.e., \(r_S^d = h (\hat{\tau}^*) > \hat{r}_S^* = h (\hat{\tau}^*) \)), it offers less value (\(v_S = v_S^d \equiv w_S - r_S^d < \hat{v}_S^* \)), and thus \(L \) indeed attracts
one-stop shoppers: \(v_{AL} = v_{AL}^m > (v_S^* > v_S^b) \). Furthermore, as \(S \) must again offer at least \(v_S = v_{AL} \) to attract one-stop shoppers, it still cannot obtain more than \(\hat{\Pi}_S^* \) by deviating in this way. Therefore, since \(S \) now obtains more profit \(\Pi_S^* \equiv h(\tau^*) F(\tau^*) > \hat{\Pi}_S^* = h(\hat{\tau}^*) F(\hat{\tau}^*) \), it is less tempted to deviate: \(\Pi_S^* > (\hat{\Pi}_S^*) \hat{\Pi}_S^* \). It follows that the conditions for sustaining the above equilibrium are less stringent than that for the loss-leading equilibrium.

E Product differentiation in the competitive market

We show that our main insights apply when consumers vary in their relative preferences over \(B_L \) and \(B_S \). For example, suppose \(B_L \) is a “standard” variety generating a homogeneous utility \(u_L \), whereas \(B_S \), a better variety supplied by specialist stores, yields a utility \(u_S + \theta q; \theta \in [0, 1] \) thus characterizes the consumer preference for quality and is distributed according to a c.d.f \(\Phi(\cdot) \) with density function \(\phi(\cdot) \), whereas \(q \) measures the degree of consumer heterogeneity. For the sake of exposition, we consider here the case where \(B_S \) is supplied by a competitive fringe and assume that:

- \(S \) provides better value for at least some quality-oriented consumers: \(w_S + q > w_L \); we allow however for \(w_L > w_S \), in which case \(L \) offers higher value than \(S \) for less quality-oriented consumers.
 - all one-stop shoppers favor \(L \): \(v_{AL} \geq \Pi_S^* = w_S + q \).

As before, consumers are willing to patronize \(L \) if \(s \leq v_{AL} \), and prefer multi-stop shopping to one-stop shopping if

\[
 s \leq w_S + \theta q - v_L = \tau + \theta q,
\]

where \(\tau = w_S - w_L + r_L \). \(L \) thus earns a profit

\[
 \Pi_L = r_AL D_AL(r_AL) - r_L D_AS(r_L)
\]

where \(D_AL(r_AL) = F(v_{AL}) \) and \(D_AS(r_L) = \int_0^1 F(\tau + \theta q) \phi(\theta) d\theta \). The loss leading logic of the baseline model applies again here: since \(v_{AL} = w_{AL} - r_AL \) and \(\tau = w_S - w_L + r_L \), \(L \)’s profit is separable in \(r_AL \) and \(r_L \), and still charges the price on \(B_L \) below-cost.
While we presented this example in terms of “vertical” quality differentiation, the same analysis applies to “horizontal” differentiation, with utilities for \(B_L \) and \(B_S \) of the form \(u_L + (1 - \theta) q \) and \(u_S + \theta q \); the only difference is that, since consumers have now heterogeneous valuations for \(B_L \) as well, the above demands become:

\[
D_{AL}(r_{AL}) = \int_0^1 F(v_{AL} + (1 - \theta) q) \phi(\theta) d\theta, \quad D_{AS}(r_L) = \int_0^1 F(\tau + (2\theta - 1) q) \phi(\theta) d\theta.
\]

F Proof of Proposition 6

F.1 Local Monopolies with heterogeneous preferences on \(A \)

We show that introducing an elastic demand in market \(A \) does not preclude the large retailer from adopting a loss-leading strategy, so as to extract additional surplus from multi-stop shoppers. We focus on the large retailer’s best response to the strategies of the smaller retailer(s); thus, what follows applies equally to the case of a strategic rival and that of a competitive fringe.

\(L \)'s profit can be written as (see Figure 1):

\[
\Pi_L = r_{AL} D_{AL} + r_A D_{AS} = r_{AL} \int_0^{x_{AL}} G(x_A(s)) f(s) ds + r_A \int_0^\tau G(x_A(s)) f(s) ds.
\]

To characterize the equilibrium values of \(r_L \) and \(r_{AL} \), consider first a modification of \(r_A \) by \(dr \), adjusting \(r_L \) by \(-dr\) so as to keep \(r_{AL} \) constant. Such a change does not affect the behavior of one-stop shoppers (it has no impact on \(v_{AL} \) and \(x_{AL}(s) \)), but (see Figure 2):

- It affects multi-shop shoppers: for \(s < \tau \), the marginal consumer indifferent between buying \(A \) from \(L \) or patronizing \(S \) only becomes \(x = x_A(s) - dr \); therefore, \(L \) loses \(g(x_A(s)) dr \) consumers, on which it no longer earns the margin \(r_A \). \(L \) however increases its margin by \(dr \) on the mass \(G(x_A(s)) \) of consumers that buy \(A \). Thus, the overall impact of such an adjustment on multi-stop shoppers is equal to

 \[
 \int_0^\tau [G(x_A(s)) - r_A g(x_A(s))] f(s) ds dr.
 \]

- In addition, it alters the choice between one-stop and multi-stop shopping: those consumers for which \(s \in [\tau - dr, \tau] \) and \(x \leq x_A(s) \) turn to one-stop shopping and now buy \(B \) as well as \(A \) from \(L_1 \), which (noting that \(x_A(\tau) = \hat{x} \)) brings a gain \(r_\ell G(\hat{x}) f(\tau) dr \).
These effects must cancel out in equilibrium, which yields
\[
\int_0^\tau \left[r_A - k(x_A(s)) \right] g(x_A(s)) f(s) \, ds = r_L G(\hat{x}) f(\tau).
\]
Likewise, adjusting slightly \(r_{AL} \) by \(dr \), keeping \(r_A \) constant (and thus changing \(r_L \) by \(dr \) as well) does not affect the behavior of multi-stop shoppers (it has no impact on \(v_{AS} \) and \(x_A(s) \)), but:

- It affects one-stop shoppers: for \(s > \tau \), the marginal shopper becomes \(x = x_{AL}(s) - dr \), and the resulting change in profit is
\[
\int_\tau^{v_{AL}} [G(x_{AL}(s)) - r_{AL} g(x_{AL}(s))] f(s) \, dsdr.
\]
- In addition, those consumers for which \(s \in [\tau, \tau + dr] \) and \(x \leq x_{AL}(s) \) become multi-stop shoppers and stop buying \(B \) from \(L \), which (noting that \(x_{AL}(\tau) = \hat{x} \)) brings a net effect \(-r_L G(\hat{x}) f(\tau) \, dr\).

In equilibrium, these effects must again cancel each other, which yields
\[
\int_\tau^{v_{AL}} [r_{AL} - k(x_{AL}(s))] g(x_{AL}(s)) f(s) \, ds = -r_L G(\hat{x}) f(\tau).
\]
Therefore, if in equilibrium \(r_L \) were non-negative, we would have
\[
\int_0^\tau \left[r_A - k(x_A(s)) \right] g(x_A(s)) f(s) \, ds \geq 0 \geq \int_\tau^{v_{AL}} [r_{AL} - k(x_{AL}(s))] g(x_{AL}(s)) f(s) \, ds,
\]
that is, \(r_A \) would exceed a weighted average of \(k(x_A(s)) \) for \(s \in [0, \tau] \), whereas \(r_{AL} \) would be lower than a weighted average of \(k(x_{AL}(s)) \) for \(s \in [\tau, v_{AL}] \). But since \(k(x_A(s)) \) and \(k(x_{AL}(s)) \) decrease as \(s \) increases (\(k(.) \) increases by assumption, and both \(x_A(s) \) and \(x_{AL}(s) \) decrease by construction), this would imply \(r_A > r_{AL} \), a contradiction. Therefore, in equilibrium, \(r_L < 0 \).

If the shopping cost \(s \) is distributed over some interval \([0, \overline{s}]\), where \(\overline{s} > \tau \) to ensure that large retailers still attract some one-stop shoppers, the first-order conditions become:
\[
\int_0^\tau \left[r_A - k(x_A(s)) \right] g(x_A(s)) f(s) \, ds = r_L G(\hat{x}) f(\tau),
\]
\[
\int_{\tau}^{\min\{v_{AL}, \overline{s}\}} \left[r_{AL} - k(x_{AL}(s)) \right] g(x_{AL}(s)) f(s) \, ds = -r_L G(\hat{x}) f(\tau);
\]
it thus suffices to replace \(v_{AL} \) with \(\min\{v_{AL}, \overline{s}\} \) in the above reasoning.
F.2 Imperfect competition among large retailers

Suppose now that two large retailers, \(L_1 \) and \(L_2 \), facing the same costs in both markets and offering the same variety \(B_L \), are differentiated in market \(A \): they respectively offer \(A_1 \) and \(A_2 \), located at the two ends of a Hotelling line of length \(X \); a consumer with preference \(x \) thus obtains a utility \(u_A - x - p_{A_1} = w_A - r_{A_1} - x \) from buying \(A_1 \) and a utility \(w_A - r_{A_2} - (X - x) \) from buying \(A_2 \). We will restrict attention to symmetric distributions (that is, the density \(g(\cdot) \) satisfies \(g(x) = g(X - x) \)) and will focus on (symmetric) equilibria in which: (i) the large retailers compete against each other as well as against their smaller rivals; (ii) small retailers attract some multi-stop shoppers by offering a value \(v_S \) that exceeds the value \(v_L \) offered by large retailers on the \(B \) market; and (iii) large retailers attract some one-stop shoppers by offering them a value \(v_{AL} \) that exceeds \(v_S \), as well as the value \(v_A \) that they offer on the \(A \) market alone.

Large retailers may compete against each other for one-stop and/or for multi-stop shoppers. In the former case, in a symmetric equilibrium (of the form \(r_{A_1L_1} = r_{A_2L_2} = r_{AL} \) and \(r_{L_1} = r_{L_2} = r_L \)) some consumers (with \(x = X/2 \)) are indifferent between buying both goods from either \(L_1 \) or \(L_2 \), and prefer doing so to patronizing \(S \) only; this implies (using \(x = X/2 \), and dropping the subscripts 1 and 2 for ease of exposition):

\[
\hat{v}_{AL} = v_{AL} - \frac{X}{2} \geq v_S,
\]

which is equivalent to

\[
\hat{v}_A = v_A - \frac{X}{2} \geq \tau = v_S - v_L.
\]

Therefore, consumers with preference \(x = X/2 \) and shopping cost \(s < \tau \), who thus prefer multi-stop shopping (that is, buying \(B_S \) from \(S \) and \(A \) from either \(L_1 \) or \(L_2 \)) to visiting \(L_1 \) or \(L_2 \) only, also prefer multi-stop shopping to patronizing \(S \) only (since \(s < \tau \) then implies \(s < \hat{v}_A \)). In other words, if large retailers compete for one-stop shoppers, they will also compete for multi-stop shoppers. This observation allows us to classify the (symmetric) candidate equilibria into two types:

- **Type M**: large retailers compete only for **multi-stop** shoppers (see Figure 3a);
- **Type O**: large retailers compete for **one-stop** shoppers as well as for multi-stop shoppers.
shoppers (see Figure 3b).

In the first type of equilibria (Figure 3a), for \(x = X/2 \) some consumers with low shopping costs are indifferent between assortments \(A_1S \) and \(A_2S \), and prefer those assortments to any other option, whereas consumers with higher shopping costs patronize \(S \) only; the relevant threshold for the shopping cost satisfies

\[
\hat{v}_A + v_S - 2s = v_S - s,
\]

that is, \(s = \hat{v}_A \). Consumers with \(s < \hat{v}_A \) thus buy \(B \) from \(S \) and \(A \) from either \(L_1 \) or \(L_2 \) (depending on whether \(x \) is smaller or larger than \(X/2 \)). Conversely, consumers whose shopping costs exceed \(v_{AL} \) do not shop. As for consumers whose shopping costs lie between \(\hat{v}_A \) and \(v_{AL} \):

- when \(s < \tau \), consumers still buy \(B_S \) from \(S \); they also buy \(A \) from \(L_1 \) if \(x < x_A(s) = v_A - s \), or from \(L_2 \) if \(x > X - x_A(s) \);

- when \(s > \tau \):
 - if \(x < x_{AL}(s) \), consumers buy both goods from \(L_1 \);
 - if \(x > X - x_{AL}(s) \), consumers buy both goods from \(L_2 \);
 - if \(x_{AL}(s) < x < X - x_{AL}(s) \), consumers patronize \(S \) if \(s < v_S \), and buy nothing otherwise.
In the second type of equilibria (Figure 3b), all consumers with a shopping cost \(s < \tau \) buy \(B_S \) from \(S \) and \(A \) from either \(L_1 \) (if \(x < X/2 \)) or \(L_2 \) (if \(x > X/2 \)), while consumers with \(s > v_{AL} \) buy nothing. For consumers with \(\tau < s < v_{AL} \), then:

- if \(s < \hat{v}_{AL} \), consumers will buy both goods from either \(L_1 \) (if \(x < X/2 \)) or \(L_2 \) (if \(x > X/2 \));
- if \(\hat{v}_{AL} < s < v_{AL} \), consumers will buy both goods from \(L_1 \) if \(x < x_{AL} (s) \) or from \(L_2 \) if \(x > X - x_{AL} (s) \), and buy nothing otherwise.

A similar description applies when the shopping cost \(s \) is bounded, truncating as necessary the interval for \(s \).

We show now loss leading is still used as an exploitative device. Consider first (symmetric) equilibria of type \(M \), in which large retailers compete only for multi-stop shoppers. In the absence of any bound on shopping costs, the demands for assortments \(A_1L_1 \) and \(A_1S \) in such equilibrium, where \(r_{A_1L_1} = r_{A_2L_2} = r_{AL} \) and \(r_{L_1} = r_{L_2} = r_L \) (and thus \(r_{A_1} = r_{A_2} = r_A \)), can be expressed as:

\[
D_{AS} = \int_{0}^{\tau} G(\hat{x}_A (s)) f (s) \, ds \quad \text{and} \quad D_{AL} = \int_{\tau}^{v_{AL}} G(x_{AL} (s)) f (s) \, ds,
\]

where as before \(\tau = v_S - v_L \) and \(x_{AL} (s) = v_{AL} - \max \{ s, v_S \} \), and \(\hat{x}_A (s) \equiv v_A - \max \{ s, \hat{v}_A \} = \min \{ X/2, x_A (s) = v_A - s \} \).

Applying the same approach as above, starting from a candidate symmetric equilibrium, consider first a small change \(dr \) in \(r_{A_1} \), adjusting \(r_{L_1} \) by \(-dr\) so as to keep \(r_{A_1L_1} \) constant:

- For \(s < \hat{v}_A \), the marginal consumer who is indifferent between buying \(A \) from \(L_1 \) or \(L_2 \) is such that:
 \[
 w_A - (r_A + dr) - x = w_A - r_A - (X - x),
 \]
 or:
 \[
 x = \frac{X}{2} - \frac{dr}{2}.
 \]

The overall impact on \(L_1 \)'s profit is thus:

\[
\int_{0}^{\hat{v}_A} [G(\hat{x}_A (s)) - \frac{1}{2} r_{AG} (\hat{x}_A (s))] f (s) \, ds dr.
\]
• For $\hat{v}_A < s < \tau$, the marginal consumer indifferent between buying A from L_1 or patronizing S becomes $x = x_A (s) - dr$, and the resulting impact on profit is:

$$\int_{\hat{v}_A}^{\tau} [G(\hat{x}_A (s)) - r_A g (\hat{x}_A (s))] f (s) ds dr.$$

• In addition, those consumers for which $s \in [\tau - dr, \tau]$ and $x \leq \hat{x}_A (s)$ turn to one-stop shopping and now buy B as well as A from L_1, which brings an additional profit $r_L G (\hat{x}) f (\tau) dr$.

Therefore, in equilibrium, we must have:

$$\int_0^{\tau} [r_A - \eta_A (s)] \hat{g} (\hat{x}_A (s)) f (s) ds = r_L G (\hat{x}) f (\tau),$$

where (using $\hat{x}_A (s) = X/2$ for $s \leq \hat{v}_A$):

$$\eta_A (s) \equiv \begin{cases} 2k (\hat{x}_A (s)) & \text{for } s < \hat{v}_A \\ k (\hat{x}_A (s)) & \text{for } s > \hat{v}_A \end{cases} \quad \text{and } \hat{g} (x) \equiv \begin{cases} \frac{g (X/2)}{2} & \text{for } x = X/2 \\ g (x) & \text{for } x < X/2 \end{cases}.$$

Consider now a small change dr in $r_{A_1 L_1}$, keeping r_{A_1} constant (and thus adjusting r_{L_1} by dr as well):

• for $s > \tau$, the marginal (one-stop) shopper becomes $x = x_{AL} (s) - dr$ and the impact on the profit is

$$\int_{\tau}^{v_{AL}} [G (x_{AL} (s)) - r_{AL} g (x_{AL} (s))] f (s) ds dr;$$

• in addition, those consumers for which $s \in [\tau, \tau + dr]$ and $x \leq x_{AL} (s)$ become multi-stop shoppers and stop buying B from L_1, which brings a net loss $-r_L G (\hat{x}) f (\tau) dr$.

In equilibrium, we must therefore have

$$\int_{\tau}^{v_{AL}} [r_{AL} - \eta_{AL} (s)] g (x_{AL} (s)) f (s) ds = -r_L G (\hat{x}) f (\tau),$$

where $\eta_{AL} (s) \equiv k (x_{AL} (s))$.

Thus, if r_L were non-negative, the two conditions (8) and (9) would imply

$$\int_0^{\tau} [r_A - \eta_A (s)] \hat{g} (\hat{x}_A (s)) f (s) ds \geq 0 \geq \int_{\tau}^{v_{AL}} [r_{AL} - \eta_{AL} (s)] g (x_{AL} (s)) f (s) ds,$$
where η_A and η_{AL} decrease as s increases, and coincide for $s = \tau$; this, in turn, would imply $r_A > r_{AL}$, a contradiction. A similar argument applies when the shopping cost s is distributed over some interval $[0, \bar{s}]$.

The same approach can be used for (symmetric) equilibria of type O, in which large retailers compete as well for one-stop shoppers. In the absence of any bound on shopping costs, the demands for assortments A_1L_1 and A_1S in such equilibrium can be expressed as

$$D_{AS} = \int_0^\tau G \left(\frac{X}{2} \right) f(s) \, ds \quad \text{and} \quad D_{AL} = \int_\tau^{\nu_{AL}} G (\hat{x}_{AL}(s)) f(s) \, ds,$$

where $\hat{x}_{AL}(s) \equiv v_A - \max \{s, \hat{v}_{AL}\} = \min \{X/2, x_{AL}(s) = v_{AL} - s\}$.

Following a small change dr in r_{A_1}, adjusting r_{L_1} by $-dr$ so as to keep $r_{A_1L_1}$ constant, we have:

- for $s < \tau$, the marginal consumer indifferent between buying A from L_1 or L_2 becomes $X/2 - dr/2$;

- in addition, those consumers for which $s \in [\tau - dr, \tau]$ and $x \leq \hat{x}_{A}(s)$ become one-stop shoppers.

Therefore, in equilibrium we must have

$$\int_0^\tau [r_A - \hat{\eta}_A] \hat{g}(\frac{X}{2}) f(s) \, ds = r_{L_1} G \left(\frac{X}{2} \right) f(\tau),$$

where $\hat{\eta}_A \equiv 2k (X/2)$ and $\hat{g}(X/2) = g(X/2)/2$.

Likewise, following a small change dr in $r_{A_1L_1}$, keeping r_{A_1} constant (and thus changing r_{L_1} by dr as well), we have:

- for $\tau < s < \hat{v}_{AL}$, the marginal (one-stop) shopper becomes $x = x_{AL}(s) - dr/2$;

- for $\hat{v}_{AL} < s < v_{AL}$, the marginal (one-stop) shopper becomes $x = x_{AL}(s) - dr$;

- in addition, those consumers for which $s \in [\tau, \tau + dr]$ and $x \leq \hat{x}_{AL}(s)$ become multi-stop shoppers: they stop buying B from L_1.

We must therefore have

$$\int_\tau^{\nu_{AL}} [r_{AL} - \hat{\eta}_{AL}(s)] \hat{g}(\hat{x}_{AL}(s)) f(s) \, ds = -r_{L_1} G (\hat{x}) f(\tau),$$

where $\hat{\eta}_{AL} \equiv 2k (X/2)$ and $\hat{g}(X/2) = g(X/2)/2$.

16
where
\[
\hat{\eta}_{AL}(s) \equiv \begin{cases} 2k(\hat{x}_{AL}(s)) & \text{for } s < \hat{v}_{AL} \\ k(\hat{x}_{AL}(s)) & \text{for } s > \hat{v}_{AL} \end{cases},
\]
and \(\hat{g}(x)\) is defined above with \(\hat{x}_{AL}(s) = X/2\) for \(\tau \leq s \leq \hat{v}_{AL}\). Thus, if \(r_L\) were non-negative, the above two conditions would imply:
\[
\int_0^\tau [r_A - \hat{\eta}_A] \hat{g}(X/2)f(s) \, ds \geq 0 \geq \int_{\tau}^{\hat{v}_{AL}} [r_{AL} - \hat{\eta}_{AL}(s)] \hat{g}(\hat{x}_{AL}(s)) \, f(s) \, ds,
\]
and a contradiction follows, since \(\hat{x}_{AL}(s) \leq X/2\), with a strict inequality for \(s > \hat{v}_{AL}\), and thus \(\hat{\eta}_{AL}(s) \leq 2k(\hat{x}_{AL}(s)) \leq \hat{\eta}_A\), with again a strict inequality for \(s > \hat{v}_{AL}\). A similar argument applies again when the shopping cost \(s\) is distributed over some interval \([0, \bar{s}]\).
If instead \(\bar{s} < \hat{v}_{AL}\), then all consumers buy both goods, in which case \(\hat{\eta}_{AL}(.) = \hat{\eta}_A\) and \(\hat{g}(\hat{x}_{AL}(s)) = \hat{g}(X/2)\), and \(r_L = 0\).