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By Diego Comin and Bart Hobijn�

This Appendix contains further mathematical details behind the model
and estimation procedures presented in the paper.

Derivation of equation (8):
The demand for capital of a particular vintage is given by the factor demand equation

(41) RvKv = �PvYv.

Since revenue generated from the output produced with the vintage is determined by the
demand function (7), we can write

(42) RvKv = �Y P
�

��1P
� 1
��1

v .

Moreover, the price of the output produced with this vintage is given by the equilibrium
unit production cost, such that we can write

(43) RvKv = �Y Z
1

��1
v

�
(1� �)
W

� 1��
��1

�
�

Rv

� �
��1

,

such that

(44) Kv = Y�Z
1

��1
v

�
(1� �)
W

� 1��
��1

�
�

Rv

��
,

where

(45) � =
�

�� 1 �
1� �
�� 1 = 1 +

�

�� 1 ,

which is equation (8).

Derivation of equation (9):
The Lagrangian associated with the dynamic pro�t maximization problem of the supplier
of capital good v at time t equals

(46) Lvt =
1Z
t

e�
R s
t
ers0ds0Hvsds,
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where Hvs is the current value Hamiltonian. We will drop the time subscript s in what
follows. Here

Hv = (RvKv �QIv) +(47)

�v

 
RvKv � �Y Z

1
��1
v

�
(1� �)
W

� 1��
��1

�
�

Rv

���1!
+

�v (Iv � �Kv) .

Here �v is the co-state variable associated with the demand function that the capital goods
supplier faces and �v is the co-state variable associated with the capital accumulation
equation.
The resulting optimality conditions read

(48)
w.r.t. Rv: (1 + �v)Kv + (�� 1)�vKv = 0.
w.r.t. Iv: �v = 1.
w.r.t. Kv: (1 + �v)Rv = er�v � �

�v.

The �rst optimality condition yields that

(49) �v = �
1

�
,

while the second and third yield that

Rv =
1

(1 + �v)
er(50)

=
�

�� 1er,
which is (9). Note that the resulting �ow pro�ts satisfy

(51) �v =
1

�� 1erKv =
1

�
RvKv.

Derivation of equation (12):
Under the one-sector model assumptions, the price of intermediates produced with capital
goods of vintage v and the aggregate price level equal

(52) Pv =
1

Zv

�
W

1� �

�1���
R

�

��
and P =

1

A

�
W

1� �

�1���
R

�

��
.

As a consequence, the relative price of output produced with vintage v is given by the
relative TFP level, i.e.

(53)
Pv
P
= Pv =

A

Zv
.

From the demand function we obtain that the revenue from output produced with capital
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goods of vintage v is given by

(54) PvYv =

�
P

Pv

� 1
��1

Y =

�
Zv
A

� 1
��1

Y .

The �ow pro�ts that the capital goods producer of vintage v makes are equal to

(55) �v =
�

�
PvYv =

�

�

�
Zv
A

� 1
��1

Y .

This means that the market value of each of the capital goods suppliers of vintage v, at
time t equals the present discounted value of the above �ow pro�ts. That is,

Mv;t =

Z 1

t

e�
R s
t
ers0ds0�vsds(56)

=

�
Zv
At

� 1
��1 �

�

Z 1

t

e�
R s
t
ers0ds0 �At

As

� 1
��1

Ysds

=

�
Zv
At

� 1
��1

"
�

�

Z 1

t

e�
R s
t
ers0ds0 �At

As

� 1
��1 Ys

Yt
ds

#
Yt

=

�
Zv
At

� 1
��1

	tYt.

Derivation of equilibrium adoption lag, (15):
The optimal adoption of technology vintages implies that the best vintage adopted at
each instant satis�es

(57) �v =Mv.

The adoption costs satisfy

�vt = 	(1 + b)

�
Zv
Zt

� #
��1

PvYv(58)

= 	(1 + b)

�
Zv
Zt

� 1+#
��1

�
Zt
At

� 1
��1

Yt.

Combining this with the market value of the capital goods supplier of capital good v, we
obtain that the vintage that satis�es (57), solves

(59)
�
Zv
Zt

� #
��1

= min

�
1;

1

1 + b

�
	t

	

��
,

such that

(60) lnZv � lnZt = min
�
0;��� 1

#

�
ln (1 + b)� ln	t � ln	

	�
,
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which means that the adoption lag equals

(61) Dt = max

�
�� 1

#

�
ln (1 + b)� ln	t � ln	

	
; 0

�
= Dt.

and constant across vintages, v.

Frictions and other adoption costs in (15):
Next, we show that the e¤ect of several potential frictions in the economy on the adoption
lags can be subsumed in the adoption cost b: We start by considering a tax on the rental
price of the capital that embodies new technologies. Let �RRv be the after tax price of
the rental price of capital associated to vintage v net of taxes (i.e. �R � 1). We assume
for simplicity of exposition that �R is constant across vintages and over time.
Equations (52) and (8) now are:

(62) Pv =
1

Zv

�
W

(1� �)

�1���
�RRv
�

��
and

(63) Kv = Y Z
1

��1
v

�
(1� �)
W

� 1��
��1

�
�

�RRv

��
.

The markup charged by capital goods producers is not a¤ected by �R.
The pro�ts �ow of the capital producer of vintage v is:

(64) �v =
�

��R
PvYv =

�

��R

�
Zv
A

� 1
��1

Y .

The market value of each capital goods supplier equals the present discounted value of
the �ow pro�ts. That is,

(65) Mv;t =

Z 1

t

e�
R s
t
ers0ds0�vsds =

�
Zv
Zt

� 1
��1

�
Zt
At

� 1
��1 	tYt

�R
,

where

(66) 	t =
�

�

Z 1

t

e�
R s
t
ers0ds0 �At

As

� 1
��1
�
Ys
Yt

�
ds

is the stockmarket capitalization to GDP ratio in the absence of taxes to the rental of
capital goods (i.e. if �R=1).
Optimal adoption implies that the adoption lag equals

(67) Dv = max

�
�� 1

#

�
ln (1 + b) + ln(�R)� lnV + lnV

	
; 0

�
= D,

where it is clear that b and �R enter symmetrically in the adoption lag.
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A similar friction of some interest is the expropriation risk. Suppose that the capital
good producer faced a probability �E of being expropriated from the right to future
pro�ts right after having incurred in the cost of adopting a new vintage. Again, for
simplicity let�s assume that this probability is the same across vintages and over time.
Then, the optimal adoption condition is

(68) �v � (1� �E)Mv.

This yields an adoption lag

(69) Dv = max

�
� � 1

#

�
ln (1 + b)� ln(1� �E)� lnV + lnV

	
; 0

�
= D,

where it is clear that b and �E enter symmetrically.
Note that the adoption lag we obtain would be the same if rather than a one time

expropriation, the capital good producer faced a probability �E of being expropriated
from the instantaneous pro�ts every period.

Best vintage adopted:
In the main text, we present the equilibrium dynamics of the model for the particular
case in which, at every instant, there are some vintages adopted. This does not have to
be the case along all equilibrium paths of this economy. Here, in the appendix, we derive
the general equilibrium dynamics of the model and subsequently explain how the main
text is a special case.
For these general dynamics, we de�ne vt as the best vintage adopted until time t.

This means that if vt > t � Dt, then, at instant t, there will be no additional vintages
adopted. In the main text, we limited ourselves to the case in which, at any point in
time, vt = t�Dt.
Derivation of aggregate TFP, (16):
This allows us to write aggregate total factor productivity as

At =

 Z vt

�1
Z

1
��1
v dv

!��1
(70)

= Z0

 Z vt

�1
e



��1vdv

!��1

= Z0

�
�� 1



���1
e
vt

= A0e

vt

which, under the assumption that vt = t�Dt, equals

(71) At = A0e

(t�Dt).

Derivation of aggregate adoption costs, (17):
We derive the aggregate adoption costs at each instant of time by taking the limit of the
adoption cost at a period of time of length dt starting at time t for dt going to zero. The
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total adoption costs between time t and t+ dt in the economy are given by:

�tdt =

Z vt+dt

vt

	(1 + b)

�
Zv
Zt

� 1+#
��1

�
Zt
At

� 1
��1

Ytdv(72)

= 	(1 + b)

"Z vt+dt

vt

Z
1+#
��1
v dv

#�
1

Zt

� 1+#
��1

�
Zt
At

� 1
��1

Yt

= 	(1 + b)

�
1

Z0

� #
��1

e�
#

��1
t

�
1

At

� 1
��1

Yt

Z vt+dt

vt

Z
1+#
��1
v dv.

Note that

(73) lim
dt#0

"Z vt+dt

vt

Z
1+#
��1
v;� dv

#
=dt = Z

1+#
��1
vt

�
vt.

This means that

lim
dt#0

"
	(1 + b)

�
1

Z0

� #
��1

e�
#

��1
t

�
1

At

� 1
��1

Yt

Z vt+dt

vt

Z
1+#
��1
v dv

#
=dt(74)

= 	(1 + b)

�
1

Z0

� #
��1

e�
#

��1
t

�
1

At

� 1
��1

Yt
�
vtZ

1+#
��1
vt

= 	(1 + b) e�
#

��1
(t�vt)
�
Z0e


vt

At

� 1
��1

Yt
�
vt.

Hence, the aggregate adoption cost at each instant in time are given by

�t = 	(1 + b) e�
#

��1
(t�vt)
�
Z0e


vt

At

� 1
��1

Yt
�
vt(75)

= 	(1 + b)

�



�� 1

�
e�

#
��1
(t�vt)Yt

�
vt.

Equilibrium:

Equilibrium in this case consists of the consumption Euler equation

(76)
_Ct
Ct
=

�
�
�� 1
�

Yt
Kt

� �
�

where we have used that the real interest rate is related to the marginal product of capital
as follows;

(77) ert = ��� 1
�

Yt
Kt
;
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The resource constraint

(78) Yt = Ct + It + �t;

The capital accumulation equation

(79) _Kt = It;

The production function

(80) Yt = AtK
�
t ;

The aggregate TFP equation

(81) At = A0e

vt ;

The adoption cost equation

(82) �t = 	(1 + b)

�



�� 1

�
e�

#
��1
(t�vt)Yt

�
vt;

The adoption lag equation

(83) Dt = max

�
�� 1

#

�
ln (1 + b)� lnVt � lnV

	
; 0

�
;

And the market value equation

(84) 	t =
�

�

Z 1

t

e�
R s
t
ers0ds0 �At

As

� 1
��1 Ys

Yt
ds,

which is best written in changes over time

(85)
_	t
	t

=

(
�
�� 1
�

Yt
Kt

+
1

�� 1
_At
At
�
_Yt
Yt

)
� �
�

1

	t
;

and the technology adoption equation

(86)
�
vt =

8<: max

�
1�

�
Dt; 0

�
if vt = t�Dt

0 if vt > t�Dt
.

Because, in the main text we assumed that vt = t�Dt for all t, the dynamic equilibrium
equations in the main text are based on the assumption that along the equilibrium paths

considered
�
vt = 1�

�
Dt, and thus that

�
Dt < 1.

Balanced growth path:
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We will consider the balanced growth path in this economy in deviation from the trend

(87) At = A0e

t.

The nine transformed/detrended variables on the balanced growth path are

(88) C�t =
Ct

A
1

1��
t

, Y �t =
Yt

A
1

1��
t

, I�t =
It

A
1

1��
t

, K�
t =

Kt

A
1

1��
t

, ��t =
�t

A
1

1��
t

, and A�t =
At
At
,

as well as

(89) Dt, 	t, and v�t = vt � t.

Derivation of transformed dynamic system:

The resulting dynamic equations that de�ne the transitional dynamics of the economy
around the balanced growth path are the following Euler equation

(90)
_C�t
C�t

=

�
�
�� 1
�

Y �t
K�
t

� �
�
� 


1� � ;

The resource constraint

(91) Y �t = C
�
t + I

�
t + �

�
t ;

The capital accumulation equation

(92)
_K�
t

K�
t

= � 


1� � +
I�t
K�
t

;

The production function

(93) Y �t = A
�
t (K

�
t )
� ;

The trend adjusted productivity level

(94) A�t = e

v�t ;

The aggregate adoption cost

(95) ��t = 	(1 + b)

�



�� 1

�
e�

#
��1
(t�v

�
t )Y �t

�
�
v
�

t + 1

�
;

The adoption lag

(96) Dt = max

�
�� 1
#


�
ln (1 + b)� ln	t + ln	

	
; 0

�
;
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and the market value transitional equation

(97)
_	t
	t

=

(
�
�� 1
�

Y �t
K�
t

+
1

�� 1

(
_A�t
A�t

+ 


)
�
(
_Y �t
Y �t

+



1� �

))
� �
�

1

	t
;

as well as the adoption law of motion

(98)
�
v
�

t =

8<: max

�
�

�
Dt;�1

�
if v�t = �Dt

�1 if vt > �Dt
.

Steady state equations:
The steady state is de�ned by the following equations

(99) 0 =

 
�
�� 1
�

Y
�

K
� � �

!
� 


1� � ;

The resource constraint

(100) Y
�
= C

�
+ I

�
+ �

�
;

The capital accumulation equation

(101) 0 = � 


1� � +
I
�

K
� ;

The production function

(102) Y
�
= A

� �
K
���

;

The trend adjusted productivity level

(103) A
�
= e�
D;

The aggregate adoption cost

(104) �
�
= 	(1 + b)

�



�� 1

�
e

#
��1
v

�
Y
�
;

The steady state adoption lag, assuming that b � 0, equals

(105) D =
�� 1
#


ln (1 + b) ;

and the market value transitional equation

(106) 0 =

�
�
�� 1
�

Y �t
K�
t

+



�� 1 �



1� �

�
� �
�

1

	
;
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as well as

(107) v
�
= �D.

Steady state solution:

Combining the Euler equation with the market cap to GDP equation, we obtain that

(108) 0 =

�
�+




�� 1

�
� �
�

1

	
,

such that the steady state market cap to GDP ratio equals

(109) 	 =
�

�

1n
�+ 


��1

o .
The steady state trend adjusted level of productivity equals

(110) A
�
=

"�
1

1 + b

� 1
#

#(��1)
.

When we insert this into the Euler equation, we �nd that

(111) 0 =

0@��� 1
�

"�
1

1 + b

� 1
#

#(��1)�
1

K
�

�1��
� � � �

1A� 


1� � ,

which allows us to solve for the steady state capital stock

(112) K
�
=

"
� ��1� A

�

�+ 

1��

# 1
1��

=

26664
� ��1�

��
1
1+b

� 1
#

�(��1)
�+ 


1��

37775
1

1��

,

such that

I
�
=




1� �K
�

(113)

=



1� �

26664
� ��1�

��
1
1+b

� 1
#

�(��1)
�+ 


1��

37775
1

1��

,
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and output equals

(114) Y
�
= A

� �
K
���

=

8<:
"�

1

1 + b

� 1
#

#(��1)9=;
1

1�� "
� ��1�
�+ 


1��

# �
1��

,

while the aggregate adoption cost is

(115) �
�
= V (1 + b)

�



�� 1

� 1
��1

e
#

��1
v
�
Y
�
,

and steady state consumption equals

(116) C
�
= Y

� � I� � ��.

Note that, for steady state consumption to be positive, we need a restriction on the
parameters, such that the total adoption costs do not fully exhaust productive capacity.

Transitional dynamics:
The next thing is to linearize the transitional dynamics around the steady state. Note
that this model has only one state variable, namely the capital stock Kt. The stock
market capitalization to GDP ratio, Vt, is a jump variable and so are the adoption lag,
Dt, the best vintage adopted, vt, and the trend adjusted productivity level, A�t .
The log-linearized equations are the Euler equation

(117)
�bC�t = ��� 1� Y

�

K
� bY �t � ��� 1� Y

�

K
� bK�

t ;

The resource constraint

(118) 0 = bY �t � C
�

Y
� bC�t � I

�

Y
� bI�t � �

�

Y
� bY �t ;

The capital accumulation equation

(119)
�bK�
t =

I
�

K
� bI�t � I

�

K
� bK�

t ;

The production function

(120) 0 = bY �t � bA�t � � bK�
t ;

The trend adjusted productivity level

(121) 0 = bA�t � 
 �v�t � v�� ;
The adoption lag equation

(122) 0 =
�
Dt �D

�
+
�� 1
#


bVt;



12 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

The aggregate adoption cost

(123)
�
v
�

t =
b��t � #

�� 1

�
v�t � v

��� bY �t ,
and the market capitalization equation

(124)
�b	t = ��� 1

�

Y
�

K
� bY �t � ��� 1� Y

�

K
� bK�

t +



�� 1
�
v�t � 


�
v�t � �

�bK�
t +

�

�

1

	
b	t,

which simpli�es to

(125)
�b	t + �1� 1

� � 1

�


�
v�t + �

�bK�
t = �

�� 1
�

Y
�

K
� bY �t � ��� 1� Y

�

K
� bK�

t +
�

�

1

	
b	t,

where we have assumed that, all along the equilibrium path v�t = �Dt, such that

(126)
�
v
�

t =

8><>: max

(
���1

#


�b	t;�1) if v�t = �Dt

�1 if vt > �Dt
.

For our examples, we limit ourselves to the part of the transitional path for which
v�t = �Dt for all t. On that path, the transitional dynamics simplify, because then

(127) v�t � v
�
= �

�
Dt �D

�
and

(128)
�
v
�

t = �
�
Dt =

�� 1
#


�b	t,
which allows us to write

(129) 0 = bA�t + 
 �Dt �D� ,
and

(130)
�� 1
#


�b	t = b��t + #

�� 1

�
Dt �D

�
� bY �t ,

as well as

(131)
�
1 + (�� 2) 


#


� �b	t + � �bK�
t = �

�� 1
�

Y
�

K
� bY �t � ��� 1� Y

�

K
� bK�

t +
�

�

1

	
b	

Derivation of intermediate technology aggregation results:
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The factor demands for each of the vintage speci�c output types satisfy

(132) WL� =W

Z
v2V�

Lvdv = (1� �)
Z
v2V�

PvYvdv = (1� �)P�Y� ,

and

(133) RK� = R

Z
v2V�

Kv�dv = �

Z
v2V�

PvYvdv = �P�Y� .

Hence relative factor demands are the same as relative revenue levels

(134)
PvYv
P�Y�

=

�
Yv
Y�

� 1
�

=
Lv
L�

=
Kv

K�
,

which allows us to write

Yv = ZvK
�
v L

1��
v = Zv

�
Yv
Y�

� 1
�

K�
� L

1��
�(135)

= (Zv)
�

��1

�
1

Y�

� 1
� �
K�
� L

1��
�

� �
��1 .

We obtain that

Y� =

�Z
v2V�

Y
1
�
v dv

��
=

�Z
v2V�

Z
1

��1
v dv

���
1

Y�

� 1
� �
K�
� L

1��
�

� �
��1(136)

=

�Z
v2V�

Z
1

��1
v dv

���1 �
K�
� L

1��
�

�
= A�K

�
� L

1��
� .

The value of the unit production cost follows from the unit production cost of a Cobb-
Douglas production function. The aggregation results at the highest level of aggregation
can be derived in a similar way.


