Consensus building: How to persuade a group

Bernard Caillaud and Jean Tirole

May 7, 2007

Additional materials

Proof of Lemma C1

Referring to Appendix C and using feasibility constraints, note that a mechanism is alternatively given by $(\gamma, \theta_i, \mu_i, \bar{\mu}_i, \nu_0, \nu_3)$ and:

(1)
$$
\eta = 1 - \gamma - \bar{\mu}_1 - \bar{\mu}_2 - \nu_0 \ge 0,
$$

(2)
$$
\nu_1 = \nu_0 - \theta_1 - \mu_1 + \bar{\mu}_1 \geq 0,
$$

(3)
$$
\nu_2 = \nu_0 - \theta_2 - \mu_2 + \bar{\mu}_2 \geq 0,
$$

(4)
$$
\xi_3 = \nu_0 - \theta_1 - \theta_2 - \mu_1 - \mu_2 + \bar{\mu}_1 + \bar{\mu}_2 - \nu_3 \geq 0.
$$

Using measurability and individual rationality, the expected probability that the project is implemented is given by:

$$
Q = \gamma + p_1 \theta_1 + p_2 \theta_2 + P \xi_3.
$$

Plugging in the value of ξ_3 from (4), we find:

(5)
$$
Q = \gamma + (p_1 - P)\theta_1 + (p_2 - P)\theta_2 + P\nu_0 - P\mu_1 - P\mu_2 + P\bar{\mu}_1 + P\bar{\mu}_2 - P\nu_3.
$$

We now write incentive constraints using measurability, individual rationality and feasibility constraints. Equation (C1) in Appendix C can be written as:

$$
\theta_i p_i (G - c) - (\mu_i p_i + \bar{\mu}_i (1 - p_i)) c + \xi_3 P(G - c)
$$

$$
-(\nu_0 (1 + P - p_1 - p_2) + \nu_1 (p_1 - P) + \nu_2 (p_2 - P) + \nu_3 P) c
$$

(6)
$$
\geq \theta_i p_i G - \theta_i (1 - p_i) L + \xi_3 P G - \xi_3 (p_j - P) L.
$$

Given previous results and using the expressions for ξ_3 and ν_i , this constraint can be written as: for $i = 1, 2$ and $j \neq i$,

(7)
$$
\theta_i (1 - p_i) L + (\nu_0 - \theta_1 - \theta_2 - \mu_1 - \mu_2 + \bar{\mu}_1 + \bar{\mu}_2 - \nu_3) (p_j - P) L
$$

$$
\geq c[\nu_0 + \bar{\mu}_i + p_j (\bar{\mu}_j - \theta_j - \mu_j)].
$$

Equation (C2) in Appendix C can be written as:

(8)
$$
0 \leq \theta_i p_i (G - c) - (\mu_i p_i + \bar{\mu}_i (1 - p_i)) c + \xi_3 P(G - c)
$$

$$
-(\nu_0 (1 + P - p_1 - p_2) + \nu_1 (p_1 - P) + \nu_2 (p_2 - P) + \nu_3 P) c.
$$

Using the same manipulations as above, the latter inequality becomes: for $i = 1, 2$ and $j \neq i$,

$$
\theta_i p_i G + (\nu_0 - \theta_1 - \theta_2 - \mu_1 - \mu_2 + \bar{\mu}_1 + \bar{\mu}_2 - \nu_3) PG
$$

(9)
$$
\geq c[\nu_0 + \bar{\mu}_i + p_j(\bar{\mu}_j - \theta_j - \mu_j)].
$$

Finally, we write Equation (C3) in Appendix C as follows: for $i=1,2$ and $j\neq i,$

(10)
$$
\gamma u^R(p_i) + \theta_j p_j u^R(\hat{p}_i) \ge 0.
$$

The program is to maximize (5) under the constraints $(1)-(2)-(3)-(4)$, (7) , (9) and $(10).$

It is first immediate that $\nu_3 = 0$ at the optimum. With A_i , B_i and C_i the multipliers associated with constraints (7), (9) and (10), and D, E_1 , E_2 and F the multipliers associated with $(1)-(2)-(3)-(4)$, one can compute the derivatives of the Lagrangian with respect to $(\mu_1, \mu_2, \bar{\mu}_1, \bar{\mu}_2, \nu_0)$ (omitting the constraints that each of these must lie within [0, 1]):

$$
\frac{\partial \mathcal{L}}{\partial \mu_i} = -P - A_i (p_j - P)L - A_j (p_i - P)L + A_j c p_i
$$

$$
-B_i PG - B_j PG + B_j c p_i - (D + E_i)
$$

$$
\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} = P + A_i (p_j - P) L + A_j (p_i - P) L - A_j c p_i
$$

$$
+ B_i PG + B_j PG - B_j c p_i - c(A_i + B_i) + (D + E_i) - F
$$

$$
\frac{\partial \mathcal{L}}{\partial v_0} = P + A_1(p_2 - P)L - cA_1 + A_2(p_1 - P)L - cA_2
$$

+ B_1PG - cB_1 + B_2PG - cB_2 + (D + E_1 + E_2) - F

Note that if $(A_j + B_j) = 0$, then $\frac{\partial \mathcal{L}}{\partial \mu_i} < 0$ and so, $\mu_i = 0$.

From the derivatives of the Lagrangian, one can derive useful relationships:

(11)
$$
\frac{\partial \mathcal{L}}{\partial \mu_i} + \frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} = -F - c(A_i + B_i) \leq 0,
$$

(12)
$$
\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} + E_j = \frac{\partial \mathcal{L}}{\partial \nu_0} + c(1 - p_i)(A_j + B_j).
$$

Claim 1. The optimum cannot be such that $\nu_0 > 0$, $\mu_1 > 0$ and $\mu_2 > 0$.

Proof: If $\nu_0 > 0$, $\mu_i > 0$ for $i = 1, 2$, it follows that $\frac{\partial \mathcal{L}}{\partial \nu_0} \geq 0$, $\frac{\partial \mathcal{L}}{\partial \mu_i} \geq 0$. A_1, A_2, B_1 and B_2 must be strictly positive so that $\frac{\partial \mathcal{L}}{\partial \mu_i} + \frac{\partial \mathcal{L}}{\partial \bar{\mu}_i}$ $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} < 0$. Hence, $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} < 0$ and $\bar{\mu}_i = 0$ from (11).

Moreover, (12) implies that $E_j > 0$, which implies $\nu_j = 0$ and so, summing (2) and (3), $\xi_3 = -\nu_0 < 0$, a contradiction.

Claim 2. The optimum is without loss of generality such that for $i = 1, 2, \mu_i \bar{\mu}_i = 0$.

Proof: Fix $\bar{\mu}_i - \mu_i$. A simple examination of Q and of all the constraints reveals that decreasing $\bar{\mu}_i$ only relaxes (1) and (7)-(9). Therefore, if $\bar{\mu}_i - \mu_i \geq 0$, the optimum can be chosen so that $\mu_i = 0$ and if $\bar{\mu}_i - \mu_i \leq 0$, the optimum can be chosen so that $\bar{\mu}_i = 0$.

Therefore, we will now focus on optima that satisfy Claim 2.

Claim 3. An optimum satisfying Claim 2 cannot be such that $\nu_0 = 0$ and $\mu_i > 0$ for some i.

Proof: Suppose that $\nu_0 = 0$ and there exists i such that $\mu_i > 0$. From Claim 2, the optimum is such that $\bar{\mu}_i = 0$. Then, the constraint that $\nu_i \geq 0$ is violated.

Claim 4. An optimum satisfying Claim 2 cannot be such that $\nu_0 > 0$, $\mu_1 > 0$ and $\mu_2 = 0$.

Proof: Suppose $\nu_0 > 0$ and $\mu_1 > 0 = \mu_2 = \bar{\mu}_1$. It must be that $\frac{\partial \mathcal{L}}{\partial \nu_0} \geq 0$, $\frac{\partial \mathcal{L}}{\partial \mu_1} \geq 0$, $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_1}$ $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_1} \leq 0$ and $A_2 + B_2 > 0$. As in the proof of Claim 1, it follows that $E_2 > 0$, which implies that $\nu_2 = 0$. So, we have:

$$
0 \leq \xi_3 = \nu_0 - \theta_1 - \theta_2 - \mu_1 - \mu_2 + \bar{\mu}_1 + \bar{\mu}_2
$$

= $\nu_2 - \theta_1 - \mu_1 + \bar{\mu}_1 = -\theta_1 - \mu_1 < 0,$

a contradiction.

Claim 5. If $\mu_1 = \mu_2 = 0$, the optimum is without loss of generality such that $\nu_0 = 0$.

Proof: Suppose $\mu_1 = \mu_2 = 0 < \nu_0$, then $\frac{\partial \mathcal{L}}{\partial \nu_0} \geq 0$.

Note first that if there exists i such that $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} > 0$, then $\bar{\mu}_i = 1$ and then $\eta < 0$, a contradiction. So, for $i = 1, 2, \frac{\partial \mathcal{L}}{\partial \bar{u}}$ $\frac{\partial \mathcal{L}}{\partial \bar{\mu}_i} \leq 0.$

Note also that if $E_i > 0$, then $\nu_i = 0$ so that $\nu_j = \xi_3 + \nu_0 > 0$ and therefore $E_i = 0$. With the previous remark, using (12), this implies that $\frac{\partial \mathcal{L}}{\partial v_0} = 0$ and for some $i, A_i = B_i = 0$.

Suppose $A_1 = B_1 = 0 < A_2 + B_2$ and $E_2 > 0 = E_1$. Consider the simplified program where the constraints corresponding to A_1 , B_1 and E_1 are omitted. In this program, ν_0 and $\bar{\mu}_2$ enter only through $(\nu_0 + \bar{\mu}_2)$ within $(0, 1]$; and so, there is no loss of generality in looking for the optimum with $\nu_0 = 0$.

The last possibility is such that $A_i = B_i = E_i = 0$ for $i = 1, 2$. Then, the simplified program where all corresponding constraints are omitted only depends upon $\nu_0 + \bar{\mu}_1 + \bar{\mu}_2$, and again, one can set $\nu_0 = 0$ without loss of generality.

To summarize, the optimal mechanism is without loss of generality such that $\nu_0 =$ $\mu_1 = \mu_2 = 0$. It is fully characterized by $(\gamma, \theta_1, \theta_2, \bar{\mu}_1, \bar{\mu}_2)$, or, defining $\lambda_i = \bar{\mu}_i - \theta_i$, as in Lemma C1. This completes the proof of Lemma C1.

Proof of Proposition C2

In the symmetric setting, feasibility requires: $\gamma + \theta_1 + \theta_2 + \lambda_1 + \lambda_2 = 1$. Incentive constraints (7), (9) and (10) now become:

(13)
$$
\theta_i(1-p)L+(\lambda_1+\lambda_2)(p-P)L \geq c[\theta_i+\lambda_i+\lambda_j p],
$$

(14)
$$
\theta_i pG + (\lambda_1 + \lambda_2) PG \geq c[\theta_i + \lambda_i + \lambda_j p],
$$

(15)
$$
\gamma(pG - (1 - p)L) + \theta_i p(\hat{p}G - (1 - \hat{p})L) \ge 0.
$$

The sponsor maximizes $Q = \gamma + (\theta_1 + \theta_2)p + (\lambda_1 + \lambda_2)P$ subject to these constraints. If $(\gamma, \theta_1, \theta_2, \lambda_1, \lambda_2)$ is an optimal mechanism, $(\gamma, \frac{\theta_1 + \theta_2}{2}, \frac{\theta_1 + \theta_2}{2})$ $\frac{+\theta_2}{2}, \frac{\lambda_1+\lambda_2}{2}$ $\frac{+\lambda_2}{2}, \frac{\lambda_1+\lambda_2}{2}$ $\frac{+\lambda_2}{2}$) is a symmetric mechanism that satisfies the feasibility constraints, the incentive constraints, obtained by summing over $i = 1$ and 2 the constraints (13), (14) and (15), and that yields the same Q. We will therefore focus wlog on symmetric mechanisms.

For a symmetric mechanism $(\gamma, \theta, \lambda)$, feasibility requires $\gamma + 2\theta + 2\lambda = 1$ and incentive constraints become:

(16)
$$
\theta(p_+ - p) + \lambda \{p_+(1+p) - (1-p) - 2P\} \ge 0,
$$

(17)
$$
\theta(p - p_{-}) + \lambda(2P - (1 + p)p_{-}) \ge 0,
$$

(18)
$$
\gamma(p - p_0) + \theta p(\hat{p} - p_0) \ge 0.
$$

The sponsor maximizes $Q = \gamma + 2\theta p + 2\lambda P$ subject to these constraints. Since for $p \ge p_0$, the unconstrained optimum $(\gamma = 1)$ is implementable, we focus on the case where $p < p_0$.

First case: $\hat{p} < p_0$. (18) implies that $\gamma = \theta = 0$. The situation is the symmetric stochastic version of the deterministic situation in which both committee members investigate sequentially. If $P \geq p_-,$ the optimum is $\lambda = \frac{1}{2}$ $\frac{1}{2}$ and $Q = P$, while $Q = 0$ if $P < p_{-}$.

Second case: $p_{-} \le p < p_0 < \hat{p}$. Consider the relaxed program where (16) and (17) are omitted:

$$
\max_{\theta,\lambda \ge 0} \left\{-2\theta(1-p) - 2\lambda(1-P)\right\}
$$

s.t. $0 \le 1 - 2\theta - 2\lambda$

$$
1 \le 2\lambda + \theta \frac{[2(p_0-p) + p(\hat{p}-p_0)]}{p_0-p}.
$$

It is immediate that the solution is $\lambda = 0$ and $\theta = \frac{1-\gamma}{2} = \theta^* \equiv \frac{p_0 - p_0}{2(p_0 - p) + p_0}$ $\frac{p_0-p}{2(p_0-p)+p(\hat{p}-p_0)}$. Moreover, since $p - p_-\geq 0$ and $p_+ - p > 0$, this solution satisfies also (16) and (17). Hence, it is the optimal mechanism in this range of parameters.

Third case: $p < p_{-} < p_0 \leq \hat{p}$. As in the previous case, we use variables $(\theta, \lambda) \geq 0$ such that $\gamma = 1 - 2\theta - 2\lambda \ge 0$. The constraints can be written as follows:

(19)
$$
\lambda \frac{[(1-p)+2P-p+(1+p)]}{p_+-p} \equiv X\lambda \le \theta,
$$

(20)
$$
\theta \leq \lambda \frac{(2P - (1+p)p_{-})}{p_{-} - p} \equiv Y\lambda,
$$

(21)
$$
1 \leq 2\lambda + \frac{\theta}{\theta^*}.
$$

Note first that if $Y \leq 0$, then $\theta = \lambda = 0$ necessarily and the set of constraints is empty. Hence $Q = 0$. Suppose now that $Y > 0$. Again, if $X > Y$, then the set of constraints is empty and $Q = 0$. The project can then be implemented with positive probability only if $Y \geq X$ and $Y > 0$. In this last case, consider the relaxed program where the sole constraints are $\theta \geq 0$, $\lambda \geq 0$, (20) and (21):

$$
\max_{\theta, \lambda \ge 0} \left\{-2\theta(1-p) - 2\lambda(1-P)\right\}
$$

s.t. $\theta \le Y\lambda$
 $1 \le 2\lambda + \frac{\theta}{\theta^*}.$

The constraint (21) must necessarily be binding, since otherwise the optimum would be $\theta = \lambda = 0$ which would violate (21). The constraint (20) must also be binding, since otherwise, the optimum would be $\lambda = 0$, $\theta = \theta^*$ and this would violate (20). Hence, the solution is: $\theta = Y\lambda = \theta^{**} \equiv \left(\frac{2}{Y} + \frac{1}{\theta^{*}}\right)$ $\frac{1}{\theta^*}$)⁻¹. Moreover, since (20) is binding and $Y \geq X$, (19) is satisfied. For these values,

$$
\gamma = 1 - 2\theta^{**} (1 + \frac{1}{Y}) = \frac{\frac{1}{Y} + \frac{1}{\theta^{*}} - 1}{\frac{2}{Y} + \frac{1}{\theta^{*}}};
$$

since $\theta^* \leq \frac{1}{2}$ $\frac{1}{2}$ and $Y > 0, \gamma > 0$.

Therefore, in the range $p < p_{-} < p_0 \leq \hat{p}$, there exists a stochastic mechanism that yields a positive probability Q if and only if:

$$
2P - (1+p)p_{-} > 0 \text{ and}
$$

$$
\frac{2P - (1+p)p_{-}}{p_{-} - p} \ge \frac{(1-p) + 2P - p_{+}(1+p)}{p_{+} - p}
$$

that is, if and only if:

$$
2P > (1+p)p_{-} \text{ and}
$$

$$
2P \ge (1+p)p + (1-p)\frac{p_{-} - p}{p_{+} - p_{-}}.
$$

The condition for $Q > 0$ is therefore:

$$
\hat{p}\geq \max\{\frac{(1+p)p_-}{2p},\frac{(1+p)}{2}+\frac{(1-p)(p_--p)}{2p(p_+-p_-)}\}.
$$

In a left neighborhood of $p_$, both terms in the supremum tends to $\frac{1+p_-}{2}$ < 1; therefore, the domain for which $Q>0$ is not empty.