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Proof of Lemma C1

Referring to Appendix C and using feasibility constraints, note that a mechanism is

alternatively given by (γ, θi, µi, µ̄i, ν0, ν3) and:

η = 1− γ − µ̄1 − µ̄2 − ν0 ≥ 0,(1)

ν1 = ν0 − θ1 − µ1 + µ̄1 ≥ 0,(2)

ν2 = ν0 − θ2 − µ2 + µ̄2 ≥ 0,(3)

ξ3 = ν0 − θ1 − θ2 − µ1 − µ2 + µ̄1 + µ̄2 − ν3 ≥ 0.(4)

Using measurability and individual rationality, the expected probability that the

project is implemented is given by:

Q = γ + p1θ1 + p2θ2 + Pξ3.

Plugging in the value of ξ3 from (4), we find:

(5) Q = γ + (p1 − P )θ1 + (p2 − P )θ2 + Pν0 − Pµ1 − Pµ2 + Pµ̄1 + Pµ̄2 − Pν3.
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We now write incentive constraints using measurability, individual rationality and

feasibility constraints. Equation (C1) in Appendix C can be written as:

θipi(G− c)− (µipi + µ̄i(1− pi))c + ξ3P (G− c)

−(ν0(1 + P − p1 − p2) + ν1(p1 − P ) + ν2(p2 − P ) + ν3P )c

≥ θipiG− θi(1− pi)L + ξ3PG− ξ3(pj − P )L.(6)

Given previous results and using the expressions for ξ3 and νi, this constraint can be

written as: for i = 1, 2 and j 6= i,

θi(1− pi)L + (ν0 − θ1 − θ2 − µ1 − µ2 + µ̄1 + µ̄2 − ν3) (pj − P )L

≥ c[ν0 + µ̄i + pj (µ̄j − θj − µj)].(7)

Equation (C2) in Appendix C can be written as:

0 ≤ θipi(G− c)− (µipi + µ̄i(1− pi))c + ξ3P (G− c)

−(ν0(1 + P − p1 − p2) + ν1(p1 − P ) + ν2(p2 − P ) + ν3P )c.(8)

Using the same manipulations as above, the latter inequality becomes: for i = 1, 2 and

j 6= i,

θipiG + (ν0 − θ1 − θ2 − µ1 − µ2 + µ̄1 + µ̄2 − ν3) PG

≥ c[ν0 + µ̄i + pj (µ̄j − θj − µj)].(9)

Finally, we write Equation (C3) in Appendix C as follows: for i = 1, 2 and j 6= i,

(10) γuR(pi) + θjpju
R(p̂i) ≥ 0.

The program is to maximize (5) under the constraints (1)-(2)-(3)-(4), (7), (9) and

(10).

2



It is first immediate that ν3 = 0 at the optimum. With Ai, Bi and Ci the multipliers

associated with constraints (7), (9) and (10), and D, E1, E2 and F the multipliers associ-

ated with (1)-(2)-(3)-(4), one can compute the derivatives of the Lagrangian with respect

to (µ1, µ2, µ̄1, µ̄2, ν0) (omitting the constraints that each of these must lie within [0, 1]):

∂L

∂µi

= −P − Ai(pj − P )L− Aj(pi − P )L + Ajcpi

−BiPG−BjPG + Bjcpi − (D + Ei)

∂L

∂µ̄i

= P + Ai(pj − P )L + Aj(pi − P )L− Ajcpi

+BiPG + BjPG−Bjcpi − c(Ai + Bi) + (D + Ei)− F

∂L

∂ν0

= P + A1(p2 − P )L− cA1 + A2(p1 − P )L− cA2

+B1PG− cB1 + B2PG− cB2 + (D + E1 + E2)− F

Note that if (Aj + Bj) = 0, then ∂L
∂µi

< 0 and so, µi = 0.

From the derivatives of the Lagrangian, one can derive useful relationships:

(11)
∂L

∂µi

+
∂L

∂µ̄i

= −F − c(Ai + Bi) ≤ 0,

(12)
∂L

∂µ̄i

+ Ej =
∂L

∂ν0

+ c(1− pi)(Aj + Bj).

Claim 1. The optimum cannot be such that ν0 > 0, µ1 > 0 and µ2 > 0.

Proof: If ν0 > 0, µi > 0 for i = 1, 2, it follows that ∂L
∂ν0

≥ 0, ∂L
∂µi

≥ 0. A1, A2, B1 and B2

must be strictly positive so that ∂L
∂µi

+ ∂L
∂µ̄i

< 0. Hence, ∂L
∂µ̄i

< 0 and µ̄i = 0 from (11).

Moreover, (12) implies that Ej > 0, which implies νj = 0 and so, summing (2) and

(3), ξ3 = −ν0 < 0, a contradiction.

Claim 2. The optimum is without loss of generality such that for i = 1, 2, µiµ̄i = 0.
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Proof: Fix µ̄i − µi. A simple examination of Q and of all the constraints reveals that

decreasing µ̄i only relaxes (1) and (7)-(9). Therefore, if µ̄i − µi ≥ 0, the optimum can be

chosen so that µi = 0 and if µ̄i − µi ≤ 0, the optimum can be chosen so that µ̄i = 0.

Therefore, we will now focus on optima that satisfy Claim 2.

Claim 3. An optimum satisfying Claim 2 cannot be such that ν0 = 0 and µi > 0 for some

i.

Proof: Suppose that ν0 = 0 and there exists i such that µi > 0. From Claim 2, the

optimum is such that µ̄i = 0. Then, the constraint that νi ≥ 0 is violated.

Claim 4. An optimum satisfying Claim 2 cannot be such that ν0 > 0, µ1 > 0 and µ2 = 0.

Proof: Suppose ν0 > 0 and µ1 > 0 = µ2 = µ̄1. It must be that ∂L
∂ν0

≥ 0, ∂L
∂µ1

≥ 0, ∂L
∂µ̄1

≤ 0

and A2 + B2 > 0. As in the proof of Claim 1, it follows that E2 > 0, which implies that

ν2 = 0. So, we have:

0 ≤ ξ3 = ν0 − θ1 − θ2 − µ1 − µ2 + µ̄1 + µ̄2

= ν2 − θ1 − µ1 + µ̄1 = −θ1 − µ1 < 0,

a contradiction.

Claim 5. If µ1 = µ2 = 0, the optimum is without loss of generality such that ν0 = 0.

Proof: Suppose µ1 = µ2 = 0 < ν0, then ∂L
∂ν0

≥ 0.

Note first that if there exists i such that ∂L
∂µ̄i

> 0, then µ̄i = 1 and then η < 0, a

contradiction. So, for i = 1, 2, ∂L
∂µ̄i

≤ 0.

Note also that if Ei > 0, then νi = 0 so that νj = ξ3+ν0 > 0 and therefore Ei = 0. With

the previous remark, using (12), this implies that ∂L
∂ν0

= 0 and for some i, Ai = Bi = 0.
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Suppose A1 = B1 = 0 < A2 + B2 and E2 > 0 = E1. Consider the simplified program

where the constraints corresponding to A1, B1 and E1 are omitted. In this program, ν0

and µ̄2 enter only through (ν0 + µ̄2) within (0, 1]; and so, there is no loss of generality in

looking for the optimum with ν0 = 0.

The last possibility is such that Ai = Bi = Ei = 0 for i = 1, 2. Then, the simplified

program where all corresponding constraints are omitted only depends upon ν0 + µ̄1 + µ̄2,

and again, one can set ν0 = 0 without loss of generality.

To summarize, the optimal mechanism is without loss of generality such that ν0 =

µ1 = µ2 = 0. It is fully characterized by (γ, θ1, θ2, µ̄1, µ̄2), or, defining λi = µ̄i − θi, as in

Lemma C1. This completes the proof of Lemma C1.

Proof of Proposition C2

In the symmetric setting, feasibility requires: γ+θ1+θ2+λ1+λ2 = 1. Incentive constraints

(7), (9) and (10) now become:

(13) θi(1− p)L + (λ1 + λ2)(p− P )L ≥ c[θi + λi + λjp],

(14) θipG + (λ1 + λ2)PG ≥ c[θi + λi + λjp],

(15) γ(pG− (1− p)L) + θip(p̂G− (1− p̂)L) ≥ 0.

The sponsor maximizes Q = γ + (θ1 + θ2)p + (λ1 + λ2)P subject to these constraints.

If (γ, θ1, θ2, λ1, λ2) is an optimal mechanism, (γ, θ1+θ2

2
, θ1+θ2

2
, λ1+λ2

2
, λ1+λ2

2
) is a symmet-

ric mechanism that satisfies the feasibility constraints, the incentive constraints, obtained

by summing over i = 1 and 2 the constraints (13), (14) and (15), and that yields the same

Q. We will therefore focus wlog on symmetric mechanisms.
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For a symmetric mechanism (γ, θ, λ), feasibility requires γ +2θ +2λ = 1 and incentive

constraints become:

(16) θ(p+ − p) + λ{p+(1 + p)− (1− p)− 2P} ≥ 0,

(17) θ(p− p−) + λ(2P − (1 + p)p−) ≥ 0,

(18) γ(p− p0) + θp(p̂− p0) ≥ 0.

The sponsor maximizes Q = γ + 2θp + 2λP subject to these constraints. Since for

p ≥ p0, the unconstrained optimum (γ = 1) is implementable, we focus on the case where

p < p0.

First case: p̂ < p0. (18) implies that γ = θ = 0. The situation is the symmetric stochas-

tic version of the deterministic situation in which both committee members investigate

sequentially. If P ≥ p−, the optimum is λ = 1
2

and Q = P , while Q = 0 if P < p−.

Second case: p− ≤ p < p0 < p̂. Consider the relaxed program where (16) and (17) are

omitted:

max
θ,λ≥0

{−2θ(1− p)− 2λ(1− P )}

s.t. 0 ≤ 1− 2θ − 2λ

1 ≤ 2λ + θ
[2(p0 − p) + p(p̂− p0)]

p0 − p
.

It is immediate that the solution is λ = 0 and θ = 1−γ
2

= θ∗ ≡ p0−p
2(p0−p)+p(p̂−p0)

. Moreover,

since p− p− ≥ 0 and p+− p > 0, this solution satisfies also (16) and (17). Hence, it is the

optimal mechanism in this range of parameters.

Third case: p < p− < p0 ≤ p̂. As in the previous case, we use variables (θ, λ) ≥ 0 such

that γ = 1− 2θ − 2λ ≥ 0. The constraints can be written as follows:

(19) λ
[(1− p) + 2P − p+(1 + p)]

p+ − p
≡ Xλ ≤ θ,
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(20) θ ≤ λ
(2P − (1 + p)p−)

p− − p
≡ Y λ,

(21) 1 ≤ 2λ +
θ

θ∗
.

Note first that if Y ≤ 0, then θ = λ = 0 necessarily and the set of constraints is empty.

Hence Q = 0. Suppose now that Y > 0. Again, if X > Y , then the set of constraints is

empty and Q = 0. The project can then be implemented with positive probability only

if Y ≥ X and Y > 0. In this last case, consider the relaxed program where the sole

constraints are θ ≥ 0, λ ≥ 0, (20) and (21):

max
θ,λ≥0

{−2θ(1− p)− 2λ(1− P )}

s.t. θ ≤ Y λ

1 ≤ 2λ +
θ

θ∗
.

The constraint (21) must necessarily be binding, since otherwise the optimum would be

θ = λ = 0 which would violate (21). The constraint (20) must also be binding, since

otherwise, the optimum would be λ = 0, θ = θ∗ and this would violate (20). Hence, the

solution is: θ = Y λ = θ∗∗ ≡
(

2
Y

+ 1
θ∗

)−1
. Moreover, since (20) is binding and Y ≥ X,

(19) is satisfied. For these values,

γ = 1− 2θ∗∗(1 +
1

Y
) =

1
Y

+ 1
θ∗
− 1

2
Y

+ 1
θ∗

;

since θ∗ ≤ 1
2

and Y > 0, γ > 0.

Therefore, in the range p < p− < p0 ≤ p̂, there exists a stochastic mechanism that

yields a positive probability Q if and only if:

2P − (1 + p)p− > 0 and

2P − (1 + p)p−
p− − p

≥ (1− p) + 2P − p+(1 + p)

p+ − p
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that is, if and only if:

2P > (1 + p)p− and

2P ≥ (1 + p)p + (1− p)
p− − p

p+ − p−
.

The condition for Q > 0 is therefore:

p̂ ≥ max{(1 + p)p−
2p

,
(1 + p)

2
+

(1− p)(p− − p)

2p(p+ − p−)
}.

In a left neighborhood of p−, both terms in the supremum tends to 1+p−
2

< 1; therefore,

the domain for which Q > 0 is not empty.
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