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Additional materials

Proof of Lemma C1

Referring to Appendix C and using feasibility constraints, note that a mechanism is

alternatively given by (v, 0;, i, fii, Vo, v3) and:

(1) n = l—=—y—p—fps—vy =0,

(2) vy = vy—0— 1+ >0,

(3) Vo = Vg — by — g+ fiz >0,

(4) & = vg—01 — 0y — g — po+ iy + fis — 3 > 0.

Using measurability and individual rationality, the expected probability that the

project is implemented is given by:
Q =7+ p101 + p202 + PE&3.
Plugging in the value of &3 from (4), we find:

(5) Q=7+ (1 — P01+ (po — P)by + Pvy — Py — Pus + Py + Pjlis — Pus.



We now write incentive constraints using measurability, individual rationality and

feasibility constraints. Equation (C1) in Appendix C can be written as:

0ipi(G — ¢) — (papi + (1 — p;i))c + E&P(G — ¢
—((1+ P —p1 —p2) + vi(p1 — P) + v2(p2 — P) + v3P)c

(6) > 0ipiG — 0;(1 — p;)L + & PG — &(py — P)L.

Given previous results and using the expressions for £ and v;, this constraint can be

written as: for i = 1,2 and j # 1,

0;(1 —pi)) L+ (vg — 61 — 02 — iy — po + fis + fie — v3) (p; — P)L

(7) > clvo + i+ pj (15 — 05 — )]
Equation (C2) in Appendix C can be written as:

0 < 0ipi(G —c) = (papi + (1 — p;))c + &P(G — ¢

(8) —(7/0(1 + P — P1 —pg) + 1/1(])1 — P) + VQ(]?Q — P) + 1/3P)C.
Using the same manipulations as above, the latter inequality becomes: for ¢ = 1,2 and
J# 1,
QipiG+(V0—91—eg—ﬂl—MQ‘i‘ﬂl‘i‘ﬂg—l/g)PG
(9) > clvo + i+ pj (15 — 05 — 1))
Finally, we write Equation (C3) in Appendix C as follows: for i = 1,2 and j # 1,
(10) yu®(p;) + 0;p;u(p;) > 0.

The program is to maximize (5) under the constraints (1)-(2)-(3)-(4), (7), (9) and
(10).



It is first immediate that 5 = 0 at the optimum. With A;, B; and C; the multipliers
associated with constraints (7), (9) and (10), and D, E;, Ey and F the multipliers associ-
ated with (1)-(2)-(3)-(4), one can compute the derivatives of the Lagrangian with respect

to (w1, fo, fi1, fiz, Vo) (omitting the constraints that each of these must lie within [0, 1]):

oL
O

oL

oL

a_lj = P+A1(p2—P)L—CA1+A2(p1—P)L—CAQ
0

+BlpG—CBl+BQPG—CB2+<D+E1+E2)—F

Note that if (A; + B;) = 0, then g—i < 0 and so, p; = 0.

From the derivatives of the Lagrangian, one can derive useful relationships:

oL oL
— _ I _ . N\ <
(11) o + o c(A;+ B;) <0,
oL oL
(12) a_,L_Ll + Ej = 8_V0 -+ C(l —pi)<Aj + Bj).

Claim 1. The optimum cannot be such that vy > 0, 1 > 0 and g > 0.

Proof: If vy > 0, p; > 0 for « = 1,2, it follows that g—fo >0, g—/f_ > 0. Ay, As, By and By

oL
Opi

must be strictly positive so that g—; < 0. Hence, 2% < 0 and fi; = 0 from (11).

? Opi;
Moreover, (12) implies that E; > 0, which implies v; = 0 and so, summing (2) and

(3), &3 = —1p < 0, a contradiction.

Claim 2. The optimum is without loss of generality such that for i = 1,2, pu;jir; = 0.
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Proof: Fix pi; — p;. A simple examination of () and of all the constraints reveals that
decreasing fi; only relaxes (1) and (7)-(9). Therefore, if fi; — p; > 0, the optimum can be

chosen so that p; = 0 and if g; — pu; < 0, the optimum can be chosen so that ji; = 0.

Therefore, we will now focus on optima that satisfy Claim 2.

Claim 3. An optimum satisfying Claim 2 cannot be such that vy = 0 and p; > 0 for some

1.

Proof: Suppose that 1y = 0 and there exists ¢ such that pu; > 0. From Claim 2, the

optimum is such that ji; = 0. Then, the constraint that v; > 0 is violated.

Claim 4. An optimum satisfying Claim 2 cannot be such that vy > 0, py > 0 and pe = 0.

Proof: Suppose vy > 0 and p; > 0 = ps = fi7. It must be that g—fo >0, g—}i >0, g—; <0
and Ay + By > 0. As in the proof of Claim 1, it follows that Fy > 0, which implies that

vy = 0. So, we have:

0 < &G=vyg—0 —0y— pn — po+ fin + [lo

= vo— 01—+ iy = =0 — g <0,

a contradiction.

Claim 5. If puy = ps = 0, the optimum is without loss of generality such that vy = 0.

Proof: Suppose p; = ps = 0 < v, then g—lﬁ) > 0.

Note first that if there exists ¢ such that g—; > 0, then i; = 1 and then n < 0, a
contradiction. So, for ¢ =1, 2, g—é <0.

Note also that if £; > 0, then v; = 0 so that v; = {34+19 > 0 and therefore £; = 0. With

the previous remark, using (12), this implies that g—li = 0 and for some i, A; = B; = 0.
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Suppose Ay = B; =0 < Ay + By and Ey; > 0 = E;. Consider the simplified program
where the constraints corresponding to A;, B; and E; are omitted. In this program, 1
and [io enter only through (v + fi2) within (0, 1]; and so, there is no loss of generality in
looking for the optimum with vy = 0.

The last possibility is such that A; = B; = E; = 0 for ¢ = 1,2. Then, the simplified
program where all corresponding constraints are omitted only depends upon v+ fig + jio,

and again, one can set vy = 0 without loss of generality.

To summarize, the optimal mechanism is without loss of generality such that 1y =
w1 = po = 0. It is fully characterized by (v, 0y, 6, fi1, fiz), or, defining A\; = f; — 6;, as in

Lemma C1. This completes the proof of Lemma C1.

Proof of Proposition C2

In the symmetric setting, feasibility requires: y+6;+603+A 4+ = 1. Incentive constraints

(7), (9) and (10) now become:

(13) 0:(1 —p)L + (A + Xa)(p — P)L > [0 + \i + \jpl,
(14) 0;pG + (M + A2) PG > c[0; + A\ + \jpl,
(15) Y(pG — (1 = p)L) + 0;p(pG — (1 — p)L) > 0.

The sponsor maximizes Q = v + (01 + 62)p + (A1 + A2) P subject to these constraints.

01462 01462 >\1+>\2’ >\1~5>\2) is a symmet—

If (7, 01,02, A1, A2) is an optimal mechanism, (vy, 2572, 2472, 25
ric mechanism that satisfies the feasibility constraints, the incentive constraints, obtained
by summing over ¢ = 1 and 2 the constraints (13), (14) and (15), and that yields the same

Q. We will therefore focus wlog on symmetric mechanisms.



For a symmetric mechanism (v, 8, \), feasibility requires v+ 260 + 2\ = 1 and incentive

constraints become:

(16) O(pr —p) + Mp+(L+p) — (1 —p) —2P} >0,
(17) O(p—p-) + A2P — (1+p)p-) >0,
(18) Y(p — po) + Op(p — po) > 0.

The sponsor maximizes () = v + 20p + 2AP subject to these constraints. Since for
P > po, the unconstrained optimum (v = 1) is implementable, we focus on the case where
P < Po-
First case: p < po. (18) implies that v = 6§ = 0. The situation is the symmetric stochas-
tic version of the deterministic situation in which both committee members investigate
sequentially. If P > p_, the optimum is A = % and Q = P, while Q =0if P <p_.

Second case: p_ < p < py < p. Consider the relaxed program where (16) and (17) are

omitted:
—90(1—p) — 21— P
max {—20(1 —p) — 2M1 - P)}
st. 0 < 1 —260—2)\
2 — -
| < ox g g2po—p) 00— po)]
Do—Pp
It is immediate that the solution is A = 0 and § = 52 = §* = ——L22___ Moreover,
2 2(po—p)+p(p—po)

since p—p_ > 0 and p; —p > 0, this solution satisfies also (16) and (17). Hence, it is the
optimal mechanism in this range of parameters.

Third case: p < p_ < pg < p. As in the previous case, we use variables (#, A) > 0 such
that v =1 — 20 — 2\ > 0. The constraints can be written as follows:

[(1—p)+2P —py(1+p)]

19 A
( ) b+ —D

=X\<90,




(20) g < \2P=U4pp)
p-—p
(21) 1§2A+%

Note first that if Y < 0, then # = X\ = 0 necessarily and the set of constraints is empty.
Hence Q = 0. Suppose now that Y > 0. Again, if X > Y, then the set of constraints is
empty and () = 0. The project can then be implemented with positive probability only
if Y > X and Y > 0. In this last case, consider the relaxed program where the sole

constraints are § > 0, A > 0, (20) and (21):

max {—20(1 —p) —2A\(1 — P)}

0,7>0
st. 0 < YA
1 < 22+ ﬁ

o=
The constraint (21) must necessarily be binding, since otherwise the optimum would be
6 = A = 0 which would violate (21). The constraint (20) must also be binding, since
otherwise, the optimum would be A = 0, § = #* and this would violate (20). Hence, the
solution is: § = YA = 6 = (& + 9%)71. Moreover, since (20) is binding and Y > X

(19) is satisfied. For these values,

and Y >0, v > 0.

since 0* < %

Therefore, in the range p < p_ < py < p, there exists a stochastic mechanism that

yields a positive probability () if and only if:

2P —(1+p)p- > 0and
2P — (1+p)p- (1—p)+2P —py(L+p)
p-—p Py =P




that is, if and only if:

2P > (1+p)p- and
p-—p

2P > (1+4+pp+(1—p) .
b+ —DP-

The condition for ) > 0 is therefore:

p > max ,
{ 2p 2 2p(py+ —p-)

In a left neighborhood of p_, both terms in the supremum tends to

the domain for which @) > 0 is not empty.

(1+p)p- (1+p)+(1—p)(p——p)}.

1+p_—
2

< 1; therefore,



