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A Sample Instructions (π = 2/3)

Introduction

This is an experiment in decision-making. Research foundations have provided funds

for conducting this research. Your payoffs will depend partly only on your decisions and

partly on chance. It will not depend on the decisions of the other participants in the

experiments. Please pay careful attention to the instructions as a considerable amount of

money is at stake.

The entire experiment should be complete within an hour and a half. At the end of the

experiment you will be paid privately. At this time, you will receive $5 as a participation

fee (simply for showing up on time). Details of how you will make decisions and receive

payments will be provided below.

During the experiment we will speak in terms of experimental tokens instead of dollars.

Your payoffs will be calculated in terms of tokens and then translated at the end of the

experiment into dollars at the following rate:

2 Tokens = 1 Dollar

A decision problem

In this experiment, you will participate in 50 independent decision problems that share
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a common form. This section describes in detail the process that will be repeated in all

decision problems and the computer program that you will use to make your decisions.

In each decision problem you will be asked to allocate tokens between two accounts,

labeled x and y. The x account corresponds to the x-axis and the y account corresponds

to the y-axis in a two-dimensional graph. Each choice will involve choosing a point on a

line representing possible token allocations. Examples of lines that you might face appear

in Attachment A1.

[Attachment A1 here]

In each choice, you may choose any x and y pair that is on the line. For example, as

illustrated in Attachment A2, choice A represents a decision to allocate q tokens in the

x account and r tokens in the y account. Another possible allocation is B, in which you

allocate w tokens in the x account and z tokens in the y account.

[Attachment A2 here]

Each decision problem will start by having the computer select such a line randomly

from the set of lines that intersect with at least one of the axes at 50 or more tokens but

with no intercept exceeding 100 tokens. The lines selected for you in different decision

problems are independent of each other and independent of the lines selected for any of

the other participants in their decision problems.

To choose an allocation, use the mouse to move the pointer on the computer screen

to the allocation that you desire. When you are ready to make your decision, left-click to

enter your chosen allocation. After that, confirm your decision by clicking on the Submit
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button. Note that you can choose only x and y combinations that are on the line. To

move on to the next round, press the OK button. The computer program dialog window

is shown in Attachment A3.

[Attachment A3 here]

Your payoff at each decision round is determined by the number of tokens in your x

account and the number of tokens in your y account. At the end of the round, the computer

will randomly select one of the accounts, x or y. For each participant, account y will be

selected with 1/3 chance and account x will be selected with 2/3 chance. You will only

receive the number of tokens you allocated to the account that was chosen.

Next, you will be asked to make an allocation in another independent decision. This

process will be repeated until all 50 rounds are completed. At the end of the last round,

you will be informed the experiment has ended.

Earnings

Your earnings in the experiment are determined as follows. At the end of the experi-

ment, the computer will randomly select one decision round from each participant to carry

out (that is, 1 out of 50). The round selected depends solely upon chance. For each

participant, it is equally likely that any round will be chosen.

The round selected, your choice and your payment will be shown in the large window

that appears at the center of the program dialog window. At the end of the experiment,

the tokens will be converted into money. Each token will be worth 0.5 Dollars. Your final

earnings in the experiment will be your earnings in the round selected plus the $5 show-up

fee. You will receive your payment as you leave the experiment.

3



Rules

Your participation in the experiment and any information about your payoffs will be

kept strictly confidential. Your payment-receipt and participant form are the only places

in which your name and social security number are recorded.

You will never be asked to reveal your identity to anyone during the course of the

experiment. Neither the experimenters nor the other participants will be able to link you

to any of your decisions. In order to keep your decisions private, please do not reveal your

choices to any other participant.

Please do not talk with anyone during the experiment. We ask everyone to remain

silent until the end of the last round. If there are no further questions, you are ready to

start, an instructor will approach your desk and activate your program.

B Individual-level Data

The portfolio choices (x1, x2) as points in a scatterplot (left panel); the relationship between

ln(p1/p2) and x1/(x1+x2) (middle panel); and the relationship between ln(p1/p2) and p1x1

(left panel).

A. Symmetric Treatment (π = 1/2)

[Attachment B1 here]

B. Asymmetric Treatment (π = 1/3 and π = 2/3)

[Attachment B2 here]
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C Testing rationality

Let {(pi, xi)}50i=1be the data generated by some individual’s choices, where pi denotes the

i-th observation of the price vector and xi denotes the associated portfolio. A portfolio xi is

directly revealed preferred to a portfolio xj, denoted xiRDxj, if pi ·xi ≥ pi ·xj. A portfolio xi

is revealed preferred to a portfolio xj, denoted xiRxj, if there exists a sequence of portfolios©
xk
ªK
k=1

with x1 = xi and xK = xj, such that xkRDxk+1 for every k = 1, ...,K − 1. The

Generalized Axiom of Revealed Preference (GARP). which requires that if xiRxj then

pj ·xj ≤ pj ·xi (i.e. if xi is revealed preferred to xj, then xi must cost at least as much as xj

at the prices prevailing when xj is chosen). It is clear that if the data are generated by a

non-satiated utility function, then they must satisfy GARP. Conversely, the following result

due to Afriat (1967) tells us that if a finite data set generated by an individual’s choices

satisfies GARP, then the data can be rationalized by a well-behaved utility function.

Afriat’s Theorem If the data set {(pi, xi)} satisfies GARP, then there exists a piece-

wise linear, continuous, increasing, concave utility function u(x) such that for each

observation (pi, xi)

(1) u(x) ≤ u(xi) for any x such that pi · x ≤ pi · xi.

Hence, in order to show that the data are consistent with utility-maximizing behavior

we must check whether it satisfies GARP. Since GARP offers an exact test, it is desirable

to measure the extent of GARP violations. We report measures of GARP violations based

on three indices: Afriat (1972), Varian (1991), and Houtman and Maks (1985).
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Afriat (1972) Afriat’s critical cost efficiency index (CCEI) measures the amount by which

each budget constraint must be adjusted in order to remove all violations of GARP. For

any number 0 ≤ e ≤ 1, define the direct revealed preference relation RD(e) as xiRD(e)xj

if epi · xi ≥ pi · xj, and define R(e) to be the transitive closure of RD(e). Let e∗ be the

largest value of e such that the relation R(e) satisfies GARP. Afriat’s CCEI is the value

of e∗ associated with the data set {(pi, xi)}. It is bounded between zero and one and can

be interpreted as saying that the consumer is ‘wasting’ as much as 1 − e∗ of his income

by making inefficient choices. The closer the CCEI is to one, the smaller the perturbation

of the budget constraints required to remove all violations and thus the closer the data

are to satisfying GARP. Although the CCEI provides a summary statistic of the overall

consistency of the data with GARP, it does not give any information about which of the

observations (pi, xi) are causing the most severe violations. A single large violation may

lead to a small value of the index while a large number of small violations may result in a

much larger efficiency index.

Varian (1991) Varian refined Afriat’s CCEI to provide a measure that reflects the min-

imum adjustment required to eliminate the violations of GARP associated with each ob-

servation (pi, xi). In particular, fix an observation (pi, xi) and let ei be the largest value

of e such that R(e) has no violations of GARP within the set of portfolios xj such that

xiR(e)xj. The value ei measures the efficiency of the choices when compared to the port-

folio xi. Knowing the efficiencies {ei} for the entire set of observations {(pi, xi)} allows us

to say where the inefficiency is greatest or least. These numbers may still overstate the ex-

tent of inefficiency, however, because there may be several places in a cycle of observations

where an adjustment of the budget constraint would remove a violation of GARP and the
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above procedure may not choose the ‘least costly’ adjustment. Varian (1991) provides an

algorithm that will select the least costly method of removing all violations by changing

each budget set by a different amount. When a single number is desired, as here, one can

use e∗ = min {ei}. Thus, Varian’s (1991) index is a lower bound on the Afriat’s CCEI.

Houtman and Maks (1985) (HM) HM find the largest subset of choices that is consis-

tent with GARP. This method has a couple of drawbacks. First, some observations may be

discarded even if the associated GARP violations could be removed by small perturbations

of the budget constraint. Further, since the algorithm is computationally very intensive,

we were unable to compute the HM index for a small number of subjects (ID 211, 324,

325, 406, 504 and 608) with a large number of GARP violations. In those few cases we

report upper bounds on the consistent set.

Table C1 lists, by subject, the number of violations of the Weak Axiom of Revealed

Preference (WARP) and GARP, and also reports the values of the three indices. We allow

for small mistakes resulting from the imprecision of a subject’s handling of the mouse. The

results presented in Table C1 allow for a narrow confidence interval of one token (i.e. for

any i and j 6= i, if d(xi, xj) ≤ 1 then xi and xj are treated as the same portfolio).

[Table C1 here]

Figure C1 compares the distributions of the Varian efficiency index generated by the

sample of hypothetical subjects (gray) and the distributions of the scores for the actual

subjects (black). The horizontal axis shows the value of the index and the vertical axis

measures the percentage of subjects corresponding to each interval. The histograms show

that actual subject behavior has high consistency measures compared to the behavior of
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the hypothetical random subjects. Figure C2 shows the distribution of the HM index.

Note that we cannot generate a distribution of this index for random subjects because of

the computational load.

[Figure C1 here]

[Figure C2 here]

D Constant Relative Risk Aversion (CRRA)

[Table D1 here]

E The relationship between ln(p1/p2) and ln(bx1, bx2)
A. Symmetric Treatments (π = 1/2)

[Attachment E1 here]

B. Asymmetric Treatments (π = 1/3 and π = 2/3)

[Attachment E2 here]

F Risk measures and OLS expected-utility model

[Table F1 here]
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G Constant absolute risk aversion (CARA)

We could also have estimated the model with the assumption of constant absolute risk

aversion (CARA). The CARA utility function has two advantages. First, it allows us to

get rid of the nuisance parameter ω0. Secondly, it easily accommodates boundary portfolios.

To implement this approach, we assume the exponential form

(2) u(x) = −e−Ax

where A ≥ 0 is the coefficient of absolute risk aversion (we assume without loss of generality

that ω0 = 0). By direct calculation, the first-order conditions that must be satisfied at

each observation (x̄i1, x̄
i
2, x

i
1, x

i
2) are given by

(3) xi2−xi1 = f
£
x̄i1, x̄

i
2;α,A

¤
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄i2 ln
³
x̄i2
x̄i1

´
≥ lnα+Ax̄i2,

1
A

h
ln
³
x̄i2
x̄i1

´
− lnα

i
lnα < ln

³
x̄i2
x̄i1

´
< lnα+Ax̄i2,

0 − lnα ≤ ln
³
x̄i2
x̄i1

´
≤ lnα,

1
A

h
ln
³
x̄i2
x̄i1

´
+ lnα

i
− lnα+Ax̄i1 < ln

³
x̄i2
x̄i1

´
< − lnα,

−x̄i1 ln
³
x̄i2
x̄i1

´
≤ − lnα+Ax̄i1.

Then, for each subject n, we choose the parameters, α and A, to minimize

(4)
50P
i=1

£¡
xi2 − xi1

¢
− f

¡
x̄i1, x̄

i
2;α,A

¢¤2
.

The problemwith CARA is that it implies a (non-linear) relationship between log(p1/p2)

and x1 − x2. Since the variation in log(p1/p2) is quite small relative to the variation in

x1 − x2, the estimated individual-level regression coefficients are bound to be small. This

implies that the estimated coefficients of absolute risk aversion Ân, as well as α̂n, will be

small too. Of course, it may be true that the Ân are close to zero, but this seems unlikely
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given the behavior of the subjects, which suggests a non-negligible degree of risk aversion.

The individual-level estimation results, α̂n and Ân, are also presented in Table F1.

[Table G1 here]

H Maximum likelihood estimation (ML)

A. Constant relative risk aversion (CRRA)

In order to have a well defined likelihood function, we need to define the error structure.

To this end, we assume the power form u(x) = x1−ρ/(1 − ρ) and consider the following

stochastic utility function,

(5) min

½
α
x1−ρ1

1− ρ
eε1 +

x1−ρ2

1− ρ
eε2 ,

x1−ρ1

1− ρ
eε1 + α

x1−ρ2

1− ρ
eε2
¾
.

Recall that the data generated by an individual’s choices are {(x̄i1, x̄i2, xi1, xi2)}
50
i=1, where

(xi1, x
i
2) are the coordinates of the choice made by the subject and (x̄

i
1, x̄

i
2) are the end-

points of the budget constraint, (so we can calculate the relative prices pi1/p
i
2 = x̄i2/x̄

i
1 for

each observation i). The first-order conditions that must be satisfied at each observation

(x̄i1, x̄
i
2, x

i
1, x

i
2) can thus be written as follows:

ln

µ
x̄i2
x̄i1

¶
≥ lnα+ ρ ln

µ
1

ω

¶
+ εi for

xi1
xi2
= ω,(6)

ln

µ
x̄i2
x̄i1

¶
= lnα+ ρ ln

µ
xi2
xi1

¶
+ εi for ω <

xi1
xi2

< 1,

− lnα+ ρ ln

µ
xi2
xi1

¶
+ εi ≤ ln

µ
x̄i2
x̄i1

¶
≤ lnα+ ρ ln

µ
xi2
xi1

¶
+ εi for

xi1
xi2
= 1,

ln

µ
x̄i2
x̄i1

¶
= − lnα+ ρ ln

µ
xi2
xi1

¶
+ εi for 1 <

xi1
xi2

<
1

ω
,

ln

µ
x̄i2
x̄i1

¶
≤ − lnα+ ρ ln(ω) + εi for

xi1
xi2
=
1

ω
,
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where εi ≡ εi2− εi1. When the first order condition is an equation, it defines a unique value

of εi that satisfies the expression and hence the likelihood ϕ (εi) is well defined, where ϕ (·)

is the p.d.f. of εi. When the first order condition is an inequality, there is an interval of

values of [εi, ε̄i] that satisfy the first order condition and the probability Φ (ε̄i) − Φ (εi)

is well defined, where Φ (·) is the c.d.f. of εi. Further, we assume that εi is distributed

normally with mean zero and variance σ2.

With these terms we can define the likelihood function:

L
³©¡

x̄i1, x̄
i
2, x

i
1, x

i
2

¢ª50
i=1
; a, ρ

´
(7)

=
Q

xi1
xi2
=ω

Φ

∙
ln

µ
x̄i2
x̄i1

¶
− lnα− ρ ln

µ
1

ω

¶¸

×
Q

ω<
xi1
xi2

<1

ϕ

∙
ln

µ
x̄i2
x̄i1

¶
− lnα− ρ ln

µ
xi2
xi1

¶¸

×
Q
xi1
xi2

=1

∙
Φ

∙
lnα+ ρ ln

µ
x̄i2
x̄i1

¶¸
− Φ

∙
− lnα+ ρ ln

µ
x̄i2
x̄i1

¶¸¸

×
Q

1<
xi1
xi2

< 1
ω

ϕ

∙
ln

µ
x̄i2
x̄i1

¶
+ lnα− ρ ln

µ
xi2
xi1

¶¸

×
Q

xi1
xi2
= 1
ω

1− Φ

∙
ln

µ
x̄i2
x̄i1

¶
+ lnα− ρ ln(ω)

¸
.

We incorporate the boundary observations (x̄1, 0) or (0, x̄2) into our estimation using

strictly positive portfolios where the zero component is replaced by a small consumption

level such that the demand ratio x1/x2 is either 1/ω or ω, respectively. The minimum ratio

is chosen to be ω = 10−3. Table H1 presents the CRRA results of the ML estimation for

the full set of subjects. Table H2 displays summary statistics, and compares the results of

the ML and nonlinear least squares (NLLS) estimations.
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[Table H1 here]

[Table H2 here]

Constant absolute risk aversion (CARA) We assume the exponential form u(x) =

−e−Ax and consider the following stochastic utility function,

(8) U (x1, x2; a,A) = min{−ae−Ax1−ε1 − e−Ax2−ε2,−e−Ax1−ε1 − ae−Ax2−ε2}.

The first-order conditions that must be satisfied at each observation (x̄i1, x̄
i
2, x

i
1, x

i
2) can be

written as follows:

ln

µ
x̄i2
x̄i1

¶
≥ ln a+Ax̄i2 + εi for 0 = xi1 < xi2,(9)

ln

µ
x̄i2
x̄i1

¶
= ln a+A

¡
xi2 − xi1

¢
+ εi for 0 < xi1 < xi2,

− ln a+ εi ≤ ln

µ
x̄i2
x̄i1

¶
≤ ln a+ εi if xi1 = xi2,

ln

µ
x̄i2
x̄i1

¶
= − ln a+A

¡
xi2 − xi1

¢
+ εi for xi1 > xi2 > 0,

ln

µ
x̄i2
x̄i1

¶
≤ − ln a−Ax̄i1 + εi for xi1 > xi2 = 0.

With these terms we can define the likelihood function:
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L
³©¡

x̄i1, x̄
i
2, x

i
1, x

i
2

¢ª50
i=1
; a,A

´
(10)

=
Q

0=xi1<x
i
2

Φ

∙
ln

µ
x̄i2
x̄i1

¶
− ln a−Ax̄i2

¸
×

Q
0<xi1<x

i
2

ϕ

∙
ln

µ
x̄i2
x̄i1

¶
− ln a−A

¡
xi2 − xi1

¢¸
×
Q

xi1=x
i
2

∙
Φ

∙
lnα+ ln

µ
x̄i2
x̄i1

¶¸
− Φ

∙
− lnα+ ln

µ
x̄i2
x̄i1

¶¸¸
×

Q
xi1>x

i
2>0

ϕ

∙
ln

µ
x̄i2
x̄i1

¶
+ ln a−A

¡
xi2 − xi1

¢¸
×

Q
xi1>x

i
2=0

1− Φ

∙
ln

µ
x̄i2
x̄i1

¶
+ ln a+Ax̄i1

¸
.

Table H3 presents the CARA results of the ML estimation for the full set of subjects.

Table H4 displays summary statistics, and compares the results of the ML and NLLS

estimations.

[Table H3 here]

[Table H4 here]
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