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A Proofs

For notational convenience, define ∗ ≡ ∗() =  


R
 ∗( )() as the derivative

of the continuation value of a firm with respect to its size  at the beginning of the next

period. Given  ⊆ R ( ≥ 1)  ⊆ R and any two functions   :  →   ¹ 

means  (x) ≤ (x) for all x ∈ . Similarly,  ≺  means  (x) ≤ (x) for all x ∈  and

 (x)  (x) for some x ∈ . Whenever there is no ambiguity, the arguments of a function

are suppressed.

Proof of Lemma 1.  is defined by (4), and the demand  of a consumer who did

not purchase from firm () in period − 1 is

(
) =

∞X
=0

Ω() e
((

)) (19)

where Ω() is the measure of consumers informed of  ≥ 0 firms in addition to firm (),

and e
 is the probability that the consumer chooses to buy from firm () Let   1

denote the measure of consumers who purchased in period  − 1 from a firm that exited

at the beginning of period  Let  =  + (1 − )  1 be the sum of the mass of new

consumers and the mass of surviving consumers whose firms exited at the beginning of period

. Label all of these consumers as ‘unattached’, since they have no information before they

receive any ads. Label the rest of the consumers as ‘attached’, as they are informed of their

most-recently-visited firms before they receive any ads. Then,

Ω() =

⎧⎨⎩ Ψ(0)

Ψ() + (1− )Ψ(− 1)
for  = 0

for   0
(20)

In (20), the term Ψ(0) gives the mass of unattached consumers who receive zero ads. The

term for   0 is the mass of unattached consumers who receive  ads, plus the mass of

attached consumers who receive (− 1) ads. Next, let  ≡ (
) be the probability that

a consumer prefers firm () to the firm he purchased from in period  − 1. Note that
0
 =

e0
 = 1 For  ≥ 1 (20) implies

e
 =

Ψ()

Ω()

 +

(1− )Ψ(− 1)
Ω()

−1
  (21)

where the first term in (21) is the probability that a consumer is unattached and has  new ads

conditional on having information about  other firms, and the second term is the probability
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that a consumer is attached and has − 1 new ads conditional on having information about
 other firms. Using (19) and (21), one can then write

(
) = 

∞X
=0

Ψ()

 + (1− )

∞X
=1

Ψ(− 1)−1
  = [ + (1− )](

) (22)

Because  ≤ 1 and   1 it follows that (
) ≤ (

) Next, for (
)  1

using (22) and differentiating with respect to price and rearranging yields

(
) =

(1− )(
)

 + (1− )()
(

) + (
)

which implies (
)  (

) because (
)  0 and (1− )(

)  0 For

(
) = 1 (22) implies (

) = (
) Consequently, (

) ≥ (
)

Proof of Proposition 1. Part (). Let ∗(|) denote the equilibrium probability

that an ad contains a price of at least  conditional on  The cumulative distribution

function, 1 − ∗(|) cannot have a mass at any  in its support otherwise any firm

charging  could reduce its price slightly and steal a positive mass of consumers from other

firms charging  leading to a discrete gain in firm value. Also, 1 − ∗(|) cannot be

flat over some interval (1 2), otherwise any firm charging 1 could increase its price to 2

without a reduction in its probability of sale. Thus, 1 − ∗(|) is strictly increasing in

 over the interior of its support [∗() ∗()] where ∗() and ∗() are the min-

imum and maximum prices observed for firms with size  Therefore,
∗(|)


 0 Let

∗(|) =
P∞

=0Ψ
∗() [∗(|)]


be the demand function for a consumer conditional on

 It follows that
∗(|)


=
P∞

=0Ψ
∗()∗−1 

∗


 0, which also implies
∗()


 0.

Similar arguments apply to ∗().

Parts (), () and (). By the envelope theorem, 
∗


=  ∗


= −∗  0. Next, observe

that
∗


=

Ã ∞X
=0

Ψ∗()∗−1
!
∗0

 ∗


 (23)

Because ∗


 0 by Part (i) and (
P∞

=0Ψ
∗()∗−1)∗0  0, it follows that ∗


 0 Next,

we argue that ∗ ∗  ∗ and  ∗ must be strictly increasing in  Differentiation of ∗

yields

∗


=

Ã ∞X
=0

Ψ∗()∗−1
!
∗0

 ∗


 (24)
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Thus, ∗
 and

∗
 have the same sign. Similarly,

∗
 and

∗
 have the same sign, and

therefore so do ∗
 and

∗
 . Furthermore, the envelope theorem implies

 ∗


=

 ∗


=

∗


(∗ − +∗)  (25)

For (11) to hold, the term in parentheses in (25) must be positive. Consequently,  ∗
 and

∗
 have the same sign. Next, note that

∗


= (1− ) ∗ +

µ
(1− )

∗


+ ∗

∗



¶


To obtain a contradiction, suppose that ∗
 ≤ 0 and ∗

 ≤ 0 There are then two pos-

sibilities: ∗
 ≤ 0 or ∗

  0 If ∗
 ≤ 0, (25) implies  ∗

 ≤ 0 But then firm value is

non-increasing in firm size, and a firm has no incentive to increase its size, because exit

probability increases as firm size increases. Because the only way a firm can grow is to send

ads, there is then no advertising. Therefore, ∗
 ≤ 0, ∗

 ≤ 0 and ∗
 ≤ 0 cannot hold in

an equilibrium with positive advertising.

Suppose now that ∗
  0 Then, by (25),  ∗

  0 Now, rewrite the consumer surplus

in (1) in stationary equilibrium as

 ∗() = () + (1− )

∞X
=0

Ψ∗(){(1−∗()) ∗
1 (

11) +∗() ∗
2 ]}

where ∗ is the probability of exit, (11) denotes the next period price and size, and

 ∗
1 (

11) =

⎧⎨⎩ 
£R
max{ ∗(11)}∗( )¤

[ (00)]

if   0

if  = 0


 ∗
2 =

⎧⎨⎩ 
£R

∗( )
¤

 ∗∅

if   0

if  = 0


Then

 ∗


= (1− )

∞X
=0

Ψ∗()

µ
∗


( ∗

2 − ∗
1 (

11)) + (1−∗)
 ∗

1

1

¶
 (26)

and

 ∗
1

1
= (1− )

∞X
=0

Ψ∗()

µ
∗

1
( ∗

2 − ∗
1 (

22)) + (1−∗)
 ∗

1

2

¶
1


 (27)
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where (22) is the two-period ahead price and size, and 1 is the next period’s size. One

can thus substitute
∗

1

1 in (26) using (27). Continuing with similar substitution for all future

periods, one obtains

 ∗


=

∞X
=1

(1− )

Ã
−1Q
=1

(1−∗())

!
∗


∞P
=0

Ψ∗()( ∗
2 − ∗

1 (
))

Ã
−1Q
=1



−1

!


(28)

where () is the -period ahead price and size, and  is the size in period  Because

 ∗
  0 and exit probability declines with firm value, exit probability also declines with

firm size, i.e. ∗
  0 for all  In addition, it was assumed that 

−1  0. Furthermore,

 ∗
2 − ∗

1 (
11)  0 by the definitions of ∗

1 and
∗
2  Consequently, (28) implies

∗
  0

But since ∗
 ≤ 0 (24) implies ∗

 ≤ 0 a contradiction. Therefore, ∗
 ≤ 0 and ∗

 ≤ 0
cannot hold. Thus, the only configuration consistent with positive advertising in equilibrium

is ∗
  0

∗
  0

 ∗
  0 and

∗
  0

Proof of Proposition 2. Part (). Proposition 1(i) established that equilibrium

entails a continuous (atomless) price distribution. The firm type that offers the least surplus

to consumers cannot steal any consumers away from other firms and can do no better than

charging its monopoly price. For other firm types, optimal price must satisfy (11). To

see this claim, note that, by Proposition 1, the individual demand functions, ∗() and

∗() and hence a firm’s residual demand∗( ;), are continuous in , implying the

continuity of the profit function and the value function in  for surviving firms. Furthermore,

feasible prices for a firm type can be restricted to a compact set [ ] where  ≥  is

the monopoly price for the corresponding firm type, and a lower bound  can be imposed

because, as price declines,  −  + ∗ becomes negative eventually as ∗ is bounded from

above. Therefore, for firms that offer more than the lowest surplus, a value maximizing

price lies in the set ( ) Given the continuity of ∗ in  lowering price entails a trade-

off: a decline in profit per consumer (including a firm’s captive consumers who are only

informed of a single firm) versus an increase in profits due to a higher probability of sale to

consumers who have ads from other firms. The first order condition (11) balances these two

trade-offs. To see uniqueness, suppose that the value function for firm ( ) admits two

or more countable interior global maximizers. Take any two such maximizers, (1 1) and
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(2 2) such that 1 6= 2. Since (11) holds at both (1 1) and (2 2), by the generalized

intermediate value theorem (see, e.g. Munkres (1975) p. 154) there must exist a pair (0 0)

6= (1 1), (2 2) such that

[(1−)∗(0)+0∗(0)]+

∙
(1− )

∗(0)


+ 0

∗(0)



¸
(0−+∗) = 0

(29)

Because the distribution of price and advertising pairs is continuous conditional on, there

must exist some firm ( 0) with 0 6=  for which (0 0) is optimal. For this firm, (0 0)

satisfies

[(1−)∗(0)+0∗(0)]+

∙
(1− )

∗(0)


+0

∗(0)



¸
(0−0+∗) = 0

(30)

But because  6= 0 and all other terms are identical in (29) and (30), the two equalities cannot

hold simultaneously. Thus, there cannot be more than one discrete global interior maximizer.

The remaining possibility is that there exists a continuum of maximizers for firm ( ) that

form a connected set  of ( ) pairs, and no other firm type has a value-maximizing price

and advertising pair within this set. Suppose that is the case. Now consider any two value-

maximizing pairs (1 1) and (2 2) in this set such that 1  2. Because it is assumed

that there is no other firm type for which some pair ( ) ∈  is a value maximizer, firm

( ) can raise its price from 1 to 2 and still send 1 ads without a reduction in its residual

demand, and thereby increase its value. This contradicts with (1 1) being part of the set



Taking the total derivative of (11) and (13) with respect to  leads to

∗


= − 1

∆

∙
Φ00
µ
(1− )

∗


+ ∗

∗



¶
+

µ
∗ +

∗


(∗ − +∗)

¶¸
 (31)

where

∆ =
¡
∗ 

∗

− Φ00

¢ h³
(1− )

∗

+ ∗ 

∗


´³
2 + ∗



´
+
³
(1− )

2∗
2

+ 
2∗
2

´
(∗ − +∗)

i
−
³
∗

(∗ − +∗) + ∗(1 + ∗


)
´2

is the determinant of the Hessian of  ∗ Note that ∆  0 given the fact that the Hessian of

 ∗ is negative definite at the global maximizer (∗ ∗) Inside the square brackets in (31), the
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first term is negative because Φ00  0 (Assumption 1), ∗


 0 and ∗


 0 (Proposition 1).

To sign the second term inside the square brackets in (31), note that (5) and (11) together

yield

∗ +
∗


(∗ − +∗) =

(1− ∗)
∗


∗(∗ − +∗)

1 + [∗ + (1− ∗)∗] ∗
(1−)

 0 (32)

because ∗


 0 and all other terms in the ratio on the r.h.s. of (32) are positive. Conse-

quently, the expression in square brackets in (31) is negative, implying ∗


 0

To sign ∗
 , suppose, to obtain a contradiction, that for two firm types with marginal

cost  and sizes 
2  

1, it holds that 
∗(

2 ) ≤ ∗(
1 ) Given the continuity of the

pricing policy, one can find a firm type (
3 ) where 


3 ∈ [

1

2] such that 

∗(
3 ) =

∗(
2 ) and 

∗( ) is non-increasing over the interval (
3−

3) for some   0 Then,

by Proposition 1(iv),  ∗(∗(
3 )


3)   ∗(∗( )) for all  ∈ [

3 − 
3).

Therefore, firm (
3 ) can raise its price slightly without a reduction in its probability

of sale and increase its profit per consumer, a contradiction with ∗(
3 ) being a value

maximizer for firm (
3 )

Part (). If the exit probability∗() does not depend on directly, ∗() also

does not depend on  directly, and it reduces to a function,  ∗() of price only. At this

point, we allow for the possibility that in equilibrium ∗(∗) depends on firm size indirectly

through the optimal price ∗ By definitions (4) and (5), the demand functions ∗()

and ∗() are then also functions of price only: ∗() and ∗() Because a larger size

now confers no additional surplus to any consumer, the demand functions for previous-

period customers and the new customers acquired through ads must also be identical, i.e.

∗() ≡ ∗() Consequently, (11) reduces to

((1− ) + ) ∗ + ((1− ) + )
∗


(− +∗) = 0

Dividing through by (1−)+   0 and rearranging terms, a firm’s optimal price can be

written as

∗ =
∗(

∗)
∗(∗)− 1(−∗)

The price depends on the elasticity ∗(
∗) of the individual demand function ∗(∗) which is

independent of firm size. Furthermore, ∗ which is the change in the continuation value of
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the firm due to a change in its size∗ at the beginning of the next period, is also independent

of . Consequently, price is not a function of .

Proof of Proposition 3. The proof of Proposition 2(i) and the strict convexity of Φ

(Assumption 1(i)) imply that a unique value-maximizing ∗( ) exists. Taking the total

derivative of (11) and (13) with respect to  yields

∗


= − 1

∆

∙µ
(1− )

∗


+ ∗

∗



¶µ
∗ +

∗


(∗ − +∗)

¶
− ∗ ∗

¸
 (33)

where

 ∗ = 2

µ
(1− )

∗


+ ∗

∗



¶
+

µ
(1− )

2

2
+ ∗

2∗

2

¶
(∗ − +∗)

To sign (33), note that ∆  0 as shown earlier. Second, the first term inside the brackets

in (33) is positive, following from (32) and that ∗


 0 and ∗


 0 (Proposition 1). Next,

∆  0 and the properties of the Hessian of  ∗ at (∗ ∗) imply

 ∗ 

³
∗

(∗ − +∗) + ∗(1 + ∗


)
´2

∗ 
∗


−Φ00

− 1

Φ00
∗2

³
∗


´2
 0

where the sign follows because ∗ 
∗


− Φ00  0 (because ∆  0) and Φ00  0 (Assumption

1). As a result, the second term inside the brackets in (33) is negative. Consequently, the

entire term inside the brackets in (33) is positive. Thus, (33) is negative.

To see the monotonicity of ∗ in  consider two firms (
1 ) and (


2 ) such that


1  

2. Firm (
2 ) has a higher expected return in the current period from a marginal

ad

∗(∗1

1)(

∗
1 − )  ∗(∗2


2)(

∗
2 − )

To see the last inequality, note that ∗2  ∗1 (Proposition 2). Furthermore, it must be that

∗(∗1

1)  ∗(∗2


2) Suppose not. Firm (

2 ) could then charge price 
∗
1 and have a

probability of sale per ad ∗(∗1

2)  ∗(∗1


1) by Proposition 1. Firm (


2 ) could then

afford to raise its price and still have a higher probability of sale and higher profit per ad.

Thus, the marginal ad brings higher marginal profit in the current period to firm (
2 )

Because firm (
2 ) also has a lower likelihood of exit for all future periods, the consumer

acquired through the marginal ad also brings a larger expected marginal benefit to firm
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(
2 ) from the next period onwards. The value effect of the marginal ad must therefore be

larger for firm (
2 ) Then, by (13) and the fact that Φ

0 is strictly increasing, firm (
2 )

must send more ads.

Proof of Proposition 4. The properties of ∗ follow directly from its definition and

the properties of ∗ and ∗. Since both ∗ and ∗ are strictly increasing in  so is ∗ To

see the monotonicity of ∗ in  note that

∗


=

∗


∗∗ +

∙µ
(1− )

∗


+ ∗

∗



¶
∗ + ((1− )∗ + ∗∗)

¸
∗


(34)

Rearranging (11), and then substituting it in (34), we obtain

∗


=

∗


∗∗ +

µ
(1− )

∗


+ ∗

∗



¶
(−∗)

∗




∗


∗∗ +

µ
(1− )

∗


+ ∗

∗



¶
∗
∗


 0

where the first inequality follows because ∗ −  + ∗  0, and the second inequality from

the fact that ∗


 0, ∗


 0 ∗


 0 and ∗


 0

Theorem 1. Given the values of the parameters of the model except  there is some

0  0 such that there exists a unique stationary equilibrium with a positive advertising and

positive entry and exit, i.e. ∗  0 and ∗()  0 for some  ∈ [∞) as long as   0.

Proof of Theorem 1. Given any equilibrium measure of firms ∗, the exit threshold

∗() is uniquely defined for any  ≥ 0 by Proposition 1. Since  ∗( ) = 0 for

 ≥ ∗(), we can write for any 

∞Z
∗()

 ∗( )() = 0 (35)

For positive entry in equilibrium, free entry condition (9) must hold with equality

∞Z


 ∗(0 )() =  (36)

Let  = {(0 0) : 0 = ∗( ) 0 ≤ ∗(0)} be the set of firm of types reachable from

firm type ( ), conditional on staying in the industry. Define the operator ∗ as

∗(
 ;) =

⎧⎪⎨⎪⎩
R


(0)0 if  ≤ ∗()

0 otherwise,
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with norm k∗k  1 Invariance of ∗ in stationary equilibrium requires

∗ = ∗
∗ +∗ (37)

where ∗
∗() =

R
∗(

 ;)∗ A stationary equilibrium with positive entry and exit

is then given by a triplet (∗(·)∗ ∗) that satisfies equations (35)-(37) simultaneously.

Next, consider the advertising equilibrium corresponding to a given measure  an entry

mass  , and an exit rule (·) Let  = { (·)} Let  denote the space of continuous,
bounded functions defined over firm types under , i.e. () ≡ (· ·;) : []× [∞)→
R+, where   0 and   ∞ are the minimum and maximum firm sizes under  Endow

 with the sup-norm. Define  :  →  as the operator that matches any  ∈  to some

 () ∈  that results from the firms’ optimal choices of advertising given the distribution

of consumer surplus ( ) generated by the function  under  We will first show that,

corresponding to any  there exists a unique advertising equilibrium such that the adver-

tising policy  () adopted by firms under  generates a distribution of consumer surplus

across ads that renders the same advertising policy () optimal for . We will then show

the existence and uniqueness of a triplet ∗ = {∗ ∗ ∗(·)} that satisfies (35)-(37). The
following lemmas accomplish these tasks.

Lemma 2. Given any ,  has a unique fixed point () i.e.  (()) = ()

Lemma 3. For any configuration of the model’s parameters (except ) that satisfies

the model’s assumptions, there exists some 0  0 such that, given any   0 there is a

unique ∗ = {∗∗ ∗(·)} which satisfies (35)-(37).
Proof of Lemma 2. Given  and any  ∈ , consider the cumulative advertising

( ;) made by firms that offer at most as much surplus as firm ( ) In other words,

( ;) =

Z


∞Z
()

Γ(  ( ;))( ) (38)

where () is the marginal cost level such firm ( ()) offers as much surplus as firm ( )

does. Note that ( ;) is continuous and monotonic in its arguments  and . Using
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(13), the integrand Γ is defined as

Γ(  ( ;)) = ( ;)

= Φ0−1
³
(( ) ;)

h
(( ;)− ) + 

R
 (0;)


(0)0

i´
= Φ0−1(Λ( ( ;))

The dependence of the functions  , and  on ( ;) is made explicit. Equation (38) is

a Volterra-Fredholm type integral equation. We will show that (38) has a unique fixed point,

∗( ;), in the space of continuous, bounded, and non-decreasing functions defined over

( ) pairs. For any 1( ;) and 2( ;) in that space, an application of Mean Value

Theorem implies

kΓ(  1( ;))− Γ(  2( ;))k ≤ k( )k k1( ;)−2( ;)k 

where k·k denotes the sup-norm, and

( ) =
1

Φ00(Λ(  ( ))
Λ(  ( ))

( )


Γ is bounded and continuous in its arguments, because Φ0−1 and Λ are both continuous.

k( ;)k is also bounded, continuous, and integrable. Moreover the function ( ;)

is bounded because ( ;) ∞ for all ( ) Therefore, the conditions for the existence

and uniqueness of a solution to the integral equation (38) are satisfied (See, e.g., Proposition

2 in Hacia (1997)). As a result, there exists a unique, continuous, non-decreasing () ≡
( ;) that satisfies (38). Consequently, the advertising function () ≡ ( ;)

associated with () also exists and it is unique. In other words, the operator  () has a

unique fixed point ()

Proof of Lemma 3. Given the existence and uniqueness of an advertising equilib-

rium corresponding to a given , we now focus on the existence and uniqueness of a triplet

 satisfying equations (35)-(37) We build on the basic arguments in Hopenhayn (1992).

Assumptions A3, A4 and A5 in Hopenhayn (1992) apply with little modification: A3(a) is

satisfied because  is continuous in current period’s cost shock, and  is invariant to pre-

vious period’s shock, implying continuity. A3(b) is replaced with an invariant  process

here, but the fact that current cost shock affects end-of-period firm size implies that firm’s
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future value depends on the current cost shock, allowing the exit threshold to be defined as

∗() as described in the text. A4 is also satisfied because in any period the probability,

1−() of observing a cost shock greater than  is positive for any . Finally, A5 is satisfied
because the distribution of entrants’ cost shocks,  is continuous.

Existence: Let  be the set of continuous, bounded, non-decreasing functions

defined as (·) : R+ → [∞). First, we show that, for any (·) ∈  and  0 an invariant

measure ((·)) exists, i.e.

((·)) = ((·)) +

Equivalently,  satisfies

((·)) =(I − )
−1

where  is the identity operator and ( −)
−1 is the inverse operator for  −. Following

steps in Lemma 4 of Hopenhayn (1992), let 
 be the composition of   times with

itself and 0 =  The assumption that ()  0 for all  ∈ [∞) implies that the norm
k

 k  1 so ( − 
 )
−1 =

P∞
=0 


 following from Kolmogorov and Fomin (1970, Chapter

6, Section 23, Theorem 4, p. 231). The existence of ( −)
−1 then follows because k

 k is
non-increasing in  Thus, ((·)) satisfies invariance.
Next, we will say that the invariant measure ((·)) is continuous on  if for all

(·) ∈  and for every sequence (·)→ (·) we have ((·)) → ((·)) Continuity
with respect to is defined similarly, but simply on R+. Using arguments similar to Lemma

5 in Hopenhayn (1992), it can be shown that the invariant measure ((·)) is jointly
continuous, strictly increasing in  and non-increasing in (·) i.e. for two exit schedules
1(·), 2(·) ∈  such that 2(

) Â 1(
) we have (2(·)) ≤ (1(·)) in the sense

that
R

( )2(

 ·) ≤ R

( )1(

 ·) for any non-decreasing function  and for

any given .

For any exit rule (·) define the entry mass ((·)) implicitly as

 (((·))) =

Z ∞



 ∗ (0 ;((·)))() = 

In other words, for the invariant measure  ((·)) is the mass of entrants that are needed
for the expected discounted profit for entrants,   to be equal to the cost of entry under
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the exit rule (·). Also, define ((·)) as the mass of entrants such that for the invariant
measure  the exit rule (·) is optimal, i.e. for all  ≥ 0Z ∞

()

 ∗( ;((·)))() = 0

A stationary equilibrium with positive entry and exit exists if and only if there is a function

∗(·) such that (∗(·)) = (∗(·)). This amounts to showing that the functions  and

 intersect at least once.

It can be shown, analogous to Lemma 6 in Hopenhayn (1992), that the function  :

 → R+ is well-defined, continuous and strictly increasing, i.e. for any two functions

1(·), 2(·) ∈  such that 2(·) Â 1(·) we have (2(·))  (1(·)) In particular,
let ( ; (·)) =

∞R
()

 ( ;((·)))(). It can be shown that  is strictly

increasing in  strictly decreasing in  non-decreasing in (·) and strictly decreasing in

Note that as  → ∞ ( ; (·)) → − 1
1− because Π(

 ) → − Furthermore,
as  → 0 ((·)) → 0 Then, by Assumption 1(iii) for small   0, Π(0 (0))  0

for all (·). Therefore, ( ; (·))  0 for small  . Thus, for all ( ), there exists

a unique  such that ( ; (·)) = 0 Therefore,  is the unique value such that

( ();((·))) = 0 for all ≥ 0 Continuity of follows from the continuity of

 and because ( ();((·))) is strictly decreasing in  is strictly increasing

in (·)
Similarly, following Lemma 7 in Hopenhayn (1992), it can be shown that is continuous

and non-increasing on  as long as  (0)   As  → ∞  (((·))) → 0 and as

 → 0  (0)   Because  (((·))) is continuous and strictly decreasing in there

exists  such that  (((·))) =   is continuous because it is the minimizer of

the continuous function | (((·))) − |.  is also non-increasing because ((·))
is non-increasing in (·)
Now note that for any   0,  ( ;((·)))   (0 ;((·))) for   ∗()

because  is strictly increasing in  The fact that  ( ;((·))) has a maximum at
 then implies that ((·))  ((·)) for (·) ≡  This implies that either there exists

some function ∗(·) such that(∗(·))  (∗(·)) or((·))  ((·)) for all (·) ∈ .

In the former case, there exists an equilibrium where (∗(·)) = (∗(·))  0 for some
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∗(·) ∈ , and in the latter there exists a stationary equilibrium with no entry and exit, i.e.

for some   ∞ and the exit rule ∗(·) ≡  we have (∗(·)) = (∗(·)) = 0 Overall,

then, there exists a stationary equilibrium.

For positive entry and exit in equilibrium, entry must be relatively easy. If the entry

cost satisfies   ∗ =  (∗) for some ∗  0 then there exists some ∗(·) ∈  such that

(∗(·))  (∗(·)) Unless the advertising cost and fixed cost is very high, potential
entrants have positive expected profit, i.e.  (∗)  0 so that ∗  0 Therefore, an

equilibrium with positive entry and exit exists.

Uniqueness: Suppose that there are two exit schedules ∗1(·) and ∗2(·) such that
the corresponding measures ∗1 and 

∗
2 constitute stationary equilibria with positive entry and

exit. Assume, without loss of generality, that ∗1(0)  ∗2(0) that is, to survive the marginal

entrant needs to be more efficient in economy 2 than in economy 1. Then, we must have

 ∗2 (0 
∗
1(0))   ∗2 (0 

∗
2(0)) = 0 and  ∗1 (0 

∗
1(0)) = 0 Thus, there must exist some firm type

(0 ) such that  ∗2 (0 )   ∗1 (0 ) But free entry requires 
(∗1) =  (∗2) =  Therefore,

firm value cannot be lower for all entrant types under ∗2 compared to 
∗
1, and must increase

for some. In other words, if the values of all entrant types move in the same direction in

response to a change in the measure of firms, the free entry condition is violated under ∗2

and the two equilibria cannot coexist. We will show that this is the case. Assume, without

loss of generality, that when the equilibrium measure of firms ∗1 changes to ∗2, the profit

of the most efficient entrant decreases, i.e.  ∗2 (0 )   ∗1 (0 ). If the profits of all entrants

with marginal cost higher than  also decrease, then the equilibrium is unique. Take any

cost level 0 ∈ (min{∗1(0) ∗2(0)}] Consider the set of firm types that provide a consumer

at least as much surplus as firm (0 ) under measure   = 1 2

(0 ) = {( ) : ∗( ) ≥ ∗(0 )}

Since  ∗2 (0 )   ∗1 (0 ) we must have 2(2(0 ))  1(1(0 )) because profit is strictly

decreasing in the measure of firms that offer more consumer surplus than firm type (0 ).

This implies ∗
2  ∗

1  i.e. entry mass must be higher for 
∗
2 But since 

∗ is strictly in-

creasing in we must then also have 2(2(0 
0))  1(1(0 

0)) and therefore  ∗2 (0 
0) 

 ∗1 (0 
0) for all 0 ∈ (min{∗1(0) ∗2(0)}] Thus, we have  (∗2)   (∗1) =  and the free
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entry condition is violated under ∗2 implying uniqueness. This completes the proof of

Lemma 3 and Theorem 1.

Proof of Proposition 5. Part () Let  ∗ and ∗ denote, respectively, the cumulative

distribution function and the density of firm size for firms of age  ≥ 1 We will show that
 ∗ ()   ∗−1() for all  ≥ 1 Let ∗() ∈ [∞) be the largest cost shock that results
in a firm size of at least  at the end of a period, starting from a previous period size of

. The function ∗() is decreasing in its first argument and increasing in its second

argument. To see this claim, note that ∗() is implicitly defined by the law of motion

(7) as

(1− )e∗( ∗()) + ∗( ∗())e∗( ∗()) = 

Total differentiation with respect to  and  gives

∗()


= −(1− ) + ∗

 +(1− ) ∗
 + ∗ ∗



∗

e∗ +(1− )∗


+ ∗ ∗



 0

∗()


=

µ
∗


e∗ +(1− )

e∗


+ ∗
e∗


¶−1
 0

where the inequalities follow from the signs of the individual terms established in earlier

propositions. The conditional probability that the current period size is at most  can then

be written as

 ∗(|) =

⎧⎨⎩ 0

1−(∗())

if ∗()  

if ∗() ∈ [ ∗())

Therefore, for age  = 1

 ∗1 () = 1−(∗( 0))

because new firms start with no customers. For age  = 2

 ∗2 () =
Z ∗1

∗1

[1−(∗())] ∗1 (
) = 1−

Z ∗1

∗1

(∗())∗1 (
)

where ∗
1  0 and ∗

1 are the minimum and maximum firm sizes at age  = 1. But note

that Z ∗1

∗1

(∗())∗1 (
)  (∗( 0))
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because (∗())  (∗( 0)) for all   0, as ∗() is strictly increasing in

 Thus,  ∗2 ()   ∗1 () for all  ∈ [0∗
2] For any  ≥ 3 one can write

 ∗−1() = 1−
Z ∗−2

∗
−2

(∗())∗−2(
) (39)

 ∗ () = 1−
Z ∗−1

∗
−1

(∗())∗−1(
) (40)

Note that ∗
  ∗

−1 and ∗
 = ∗

1 for  ≥ 1 Now, suppose that  ∗−1()   ∗−2().

Because∗(∗()) is strictly increasing in first order stochastic dominance, together

with (39) and (40), implies  ∗ ()   ∗−1() By induction, it must then hold that 
∗
 () 

 ∗−1() for any arbitrary 

Part () Follows from part ()

Part () Follows from part () and Proposition 1.

B Simulation algorithm

We outline the simulation algorithm used for comparative statics. The baseline adver-

tising technology, Φ() =  generates positive advertising for any   1. To see this

claim, note that Assumption 1(iii) is satisfied because lim→0Φ0() = Φ0(0) = 0−1 = 0

for   1 Therefore, the marginal cost of advertising at  = 0, represented by the second

term in the l.h.s. of (13), is zero. What remains to be shown is that the marginal return to

advertising represented by the first term in the l.h.s. of (13) is positive, and thus exceeds the

marginal cost at  = 0. A feasible, but not necessarily optimal, action available to any firm

is to charge monopoly price and sell, at least, to its captive consumers. This action yields

positive revenue per ad for a firm, because, as long as advertising is not free, there is always

a positive mass of consumers whose only ad is the ad they received from the firm. Formally,

the revenue per ad for a type ( ) firm when it charges its monopoly price ( ) ≥ 

is

∗()( − +∗) ≥ Ω∗(0)( − +∗)  Ω∗(0)( − )  Ω∗(0)(− )

where the first inequality follows from the fact that ∗() ≥ Ω∗(0) the second from

∗ ≥ 0, and the third from  ≥  Because Ω∗(0)  0 the last term, Ω∗(0)(−) is positive
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as long as    which is satisfied for all   4 because  = 4 and  ∼  [1 5] Consequently,

there is positive advertising as long as the fixed cost is not too high and the industry is not

empty, i.e. the entry cost is not too high. For the industry to be non-empty, in a given

period there must be some firm types which do not exit, and the expected value of entry

must not be lower than the entry cost. The conditions for a non-empty industry are checked

as part of the simulation algorithm below.

The algorithm is based on Theorem 1 and involves nested value function iterations. The

simulation setup requires a grid of firm types. We partition the support of the marginal cost

distribution  [1 5] into a discrete set {1  }, where 1 = 1 and  = 5 We also use a

grid of firm size levels {1 } where 1 = 0 and =  where  is taken sufficiently

large to contain the upper bound on firm size in stationary equilibrium. The algorithm has

the following steps:

1. Start with initial guesses for the maximum price charged,  ≥ , the value function,

 ( ) the surplus function,  () the measure of firms, ( ) and the cumulative

distribution of ads, () (or equivalently advertising policy function ( )). We look

for fixed points by simultaneously iterating on these variables and functions.1 As initial

values, we choose  = 45  (
 ) ≡ 1

+2 for some 1 ≥ 0 and 2 ≤ 0  () ≡
0 ∅ = 0 and ∆( ) =  ≥ 0 such thatP

P
∆( ) =

P


P
  = 1 implying

that  = 1

. () is also set to be the  . of a two-dimensional discrete uniform

distribution over {1  } × {1 }. Given  () and () compute the

individual demand functions as

() =

X
=0

−

!
() (41)

() = (
)

X
=0

−

!
()

1There are two alternative methods of iteration on these functions. One method is to construct separate

loops of iteration for each function. The second method is simultaneous iteration of all or a subset of the

functions under one single loop. The first method is more robust, but computationally slower. The second

method is faster with potential problems of robustness. To deal with the robustness issues, small step sizes

for updating functions may be used. We tried both methods, and given the dimensionality of the setup, we

found that using the second method with small step sizes is easier.
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where (
) is the probability that among all the sales that take place, the firm type that

makes a randomly selected sale is not preferred to firm type () Since we do not have

(
) available initially, we start by assuming that (

) = () and update it

in further iterations as a computed (
) becomes available. The upper limit  in the

summations (41) is set to a large enough number ( = 20) and the term −
!

follows from

a Poisson approximation to Ψ().

2a. Compute
∆(

)

∆
=

(
)−(−1)

−−1 
∆(

)

∆
=

(
)−(−1)

−−1  and
∆ (

 )

∆


=

 (
 )− (

−1)

−

−1
over a grid for  and 

. Solve the discrete-space version of the corre-

sponding first order conditions (11) and (13), and find the optimal price and advertising

levels  and  for each firm type using

 =  − 
 (1− )(


 ) + (


 )


 (1− )

∆( 

 )

∆
+ 

∆( 

 )

∆

− 
X


∆ (∗ 0)
∆∗ (0) (42)

where ∗ = 
 (1− )(


 ) + (


 ), and

 =

⎡⎣(
 )
h
( − ) + 

P


∆ (∗0

)

∆∗ (0)
i



⎤⎦
1

−1

 (43)

2b. Compute period sales and profits for all firm types

∗
 = 

 (1− )(

 ) + (


 )

Π(
  ) = ∗

( − )−Φ()− 

Compute total number of ads

 =
X


X


∆(
  )

Obtain the updated value function

 0(
  ) = max{0Π(

  ) + 

X
=1

 (∗
 )()}

Compute the exit indicator

( ) =

⎧⎨⎩ 0 if Π(
  ) + 

P

=1  (
∗
 )() ≥ 0

1 otherwise.
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2c. Obtain the updated surplus functions for consumers,

∅0 =
(1− )

(1− (1− )−)

X
=1

−

!

X


∆()

 0(

) = −  (44)

+(1− )

(
−[(1−(


))
X


 (0
∗
)](

0
) +(


)

∅

+

X
=1

−

!

"
(1−(


))
X


max{ (
0


∗
)}∆()

+ (

))
X


∆()

#)


2d. Obtain the implied distribution of ads across firm types 0(
 ) using the optimal

number of ads  sent by each firm type and the measure of firms ( ) i.e.

0(

 ) =

1



X
() s.t.  ()≤ ( )

∆(
 )

Also, obtain the implied distribution of sales across firm types 0
(


 )

 =
X


X


∗
∆(

  )

0
(


 ) =

1



X
() s.t.  (

)≤ ( 

 )

∗
∆(

 )

3. Calculate the distances

(0) = max

|(

 )−0(

 )|

(  0) = max

| (

  )−  0(
  )|

( 0) = max

| (

 )− 0(

 )|

If (0)   (  0)   ( 0)   for small     0 then go to step 4. Otherwise,

set  ≡  + (1− ) 0  ≡  + (1− ) 0, and  ≡  + (1− )0 (with  = 01)

and go back to Step 2.
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4. Obtain the entry mass  using the discrete version of the free entry condition,

 = sup{ :

X
=1

 0(0 )() = }

and compute the exit rule () point-wise as

(
 ) = max{ :  0(

  )  0 and  0(
  +1) ≤ 0}

5. Using  and (
 ) and (

  ), obtain the updated measure

0(
  ) =

P
≤



P
0≤min{ ()}

( 0) +
P

0≤min{ (0)}
(0)

6. Calculate the distance

( 0) = max
()

|(
  )− 0(

  )|

If ( 0)   for some small   0 stop. If   0 and ()  1, equilibrium

entails positive entry and exit. Otherwise, set ( ) = ( ) + (1 − )0( )

 ≡  + (1 − ) 0  ≡  + (1 − ) 0,  ≡  + (1 − )0 (with  = 01) and go

back to Step 2.

C Calculation of Total Factor Productivity

Plant (establishment) level TFP is aggregated to the firm level by weighting each plant’s

TFP measure in a given industry by its share of total value of firm’s shipments in that in-

dustry. Recognizing that many plants manufacture several products that fall within more

than just one 4-digit SIC industry, we use the multifactor superlative index number for the

revenue-based productivity measurement. This index measures a plant’s productivity rela-

tive to other plants in its main 4-digit SIC industry — the industry in which the plant has

the largest value of shipments. For details on this index, see the discussion of Malmquist

productivity indices in Section 4 of Caves, Christensen and Diewert (1982). A similar ap-

proach is followed by Bernard, Redding and Schott (2010). An establishment’s output is

measured using deflated (real) value of shipments plus nominal inventory investments. The

inputs are measured using deflated value of equipment, deflated value of plant, total labor
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hours, deflated value of materials, and deflated value of energy. Labor inputs are measured as

an establishment’s production-worker hours adjusted by multiplying the production-worker

hours by the ratio of total payroll to payroll of production workers. Equipment and plant in-

puts are establishment’s book values for their structure and equipment stocks deflated using

sector-specific deflators from the Bureau of Economic Analysis. Materials and energy inputs

are based on establishment’s expenditures on materials and energy deflated using the input

price indices in NBER Productivity Database. For the calculation of 4-digit industry-level

cost shares, materials and energy expenditures and payments to labor are aggregated across

establishments in the industry. Industry level cost of capital is obtained by first multiplying

an establishment’s real capital stock with the capital rental rates for the 2-digit industry

an establishment belongs to, and then aggregating across establishments in the 4-digit in-

dustry. Each input cost is divided by the total cost at the industry level to obtain the cost

share of the input. The quantity-based (physical) TFP is calculated in the same way as in

Appendix A2 of Foster, Haltiwanger and Syverson (2008). Because the firms in the sample

for price regressions are highly specialized in their primary products and these products are

highly homogenous, we do not use a multi-product productivity measurement for the case

of physical TFP.

D Industry Definitions

A constraint on the selection of the industries in Table 3 was the switch from SIC codes

to NAICS codes in 1997, and a further revision in 2002. These changes coincided with

a period during which Internet-based commerce diffused rapidly, rendering construction of

consistent time series of industry aggregates difficult for other candidate industries. The

1987 SIC (which also applies to 1992), 1997 NAICS and 2002 NAICS codes are comparable

for all industries except for Life Insurance. For Life Insurance, the discrepancy due to

code revisions is small, as explained below. The following information about the industries

analyzed in Table 3 is taken from US Census Bureau’s Industry Statistics Sampler.

New Car Dealers (SIC 5511 / NAICS 441110) Establishments primarily engaged in re-

tailing new automobiles and light trucks, such as sport utility vehicles, and passenger and
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cargo vans, or retailing these new vehicles in combination with activities, such as repair

services, retailing used cars, and selling replacement parts and accessories.

Book Stores (SIC 5942/NAICS 451211) Establishments primarily engaged in retailing

new books.

Camera and Photographic Supplies Stores (SIC 5946/NAICS 443130) Establishments pri-

marily engaged in either retailing new cameras, photographic equipment, and photographic

supplies or retailing new cameras and photographic equipment in combination with activities,

such as repair services and film developing.

Prerecorded Tape, Compact Disc, and Record Stores (SIC 5735/NAICS 451220) Estab-

lishments primarily engaged in retailing new prerecorded audio and video tapes, compact

discs (CDs), digital video discs (DVDs), and phonograph records.

Travel Agencies (SIC 4724/NAICS 561510) Establishments primarily engaged in acting

as agents in selling travel, tour, and accommodation services to the general public and

commercial clients.

Life Insurance (SIC 6311/NAICS 524113 and 524130) Establishments primarily engaged

in underwriting life insurance. These establishments are operated by enterprises that may

be owned by stockholders, policyholders, or other carriers. The sales classified under SIC

3611 are made up of 95% of the sales classified under NAICS 524113 plus nearly all of the

sales classified under NAICS 524130. However, NAICS 524130 contains only 2.2% of the

total establishments in SIC 6311 and have a small contribution to total sales. Therefore, we

exclude NAICS 524130 in calculating the industry statistics for 1997 and 2002.

E Additional Tables and Figures
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Figure 9: Convexity of information cost: Exit rules
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Figure 10   Average Market Value versus Size
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Figure 10: Convexity of information cost: Firm size-value relationship ("0"=smallest)
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Figure 11: Convexity of information cost: Firm age-size relationship ("0"=smallest)
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Figure 12: Convexity of information cost: Firm size-volatility relationship ( ())
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Independent variables: OLS Tobit OLS Tobit

1996 Value of Shipments ($K) 0.012*** 0.013*** - -
[0.003] [0.001]

1996 Number of Employees - - 4.543*** 5.113***
[1.007] [0.084]

1997 TFP 0.194** 1.341** 0.155** 1.298**
[0.045] [0.402] [0.041] [0.403]

Multi-unit dummy 334.9 5,771.1*** 175.3 5,234.1***
[298.9] [345.2] [367.8] [276.4]

Industry fixed effects Y Y Y Y

Inverse Mills Ratio (IMR) 0.149*** - 0.147*** -
[0.041] [0.042]

R 2 / Log Likelihood 0.36 -201,878 0.28 -202,345
Notes: All variables are in levels. OLS estimation is based on Heckman's two-step correction. IMR is the ratio 
of the standard normal density  to the standard normal c.d.f. predicted from the selection equation.
Coefficients in OLS estimation (except for that of IMR) are marginal effects that take selection into account. 
Corrected standard  errors in parentheses. (*), (**), and (***) indicate significance at 10%, 5%, and 1% respectively.  
Industry fixed effects are based on 1997 SIC codes (4-digit).

Table A1. The relationship between firm advertising expenditures, size, and productivity (ASM Sample)

Dependent Variable: 1997 Advertising Expenditures ($K)
IV V


