Crowdsourcing City Government:
Using Tournaments to Improve Inspection Accuracy

By Edward L. Glaeser, Andrew Hillis, Scott Duke Kominers, and Michael Luca

Online Appendix – Proof of Proposition 1

The value of $(1 - \varphi)^{1,\Sigma} - 1$ is monotonically increasing in φ and goes from 0 to ∞ as φ goes from 0 to 1. Hence, there must exist a value of φ at which $(1 - \varphi)^{1,\Sigma} - 1$ equals $\frac{V(\overline{q}) - V(\overline{q})}{V(q_{max}) - V(q)}$, a constant. The value of $\frac{V(\overline{q}) - V(\overline{q})}{V(q_{max}) - V(q)}$ is rising with $V(\overline{q})$ and falling with $V(q)$ and $V(q_{max})$; hence, φ^* is rising with $V(\overline{q})$ and falling with $V(q)$ and $V(q_{max})$. For a given φ, the value of $(1 - \varphi)^{1,\Sigma} - 1$ is rising with $\frac{\Sigma}{w}$; hence, φ^* must be falling with $\frac{\Sigma}{w}$.