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This appendix contains the proofs of Propositions 9–12, Propositions A.1–A.4, and Corollary A.1

omitted from the main body of the paper.

Proof of Proposition 9

Proof of part (a). First consider the complete financial network. If ε < ε∗p, at least one bank does

not default. Given the symmetry, all n− p banks that are not hit with a negative shock do not default

either, implying that the complete network is the most stable and resilient financial network in the

face of small shocks.

Now consider the ring financial network and assume that p consecutive banks, labeled i + 1

through j = i+ p, are hit with negative shocks. An immediate observation is that all banks in default

also form a connected chain, say of length τ ≥ p, the last of which is labeled s = i + τ . In view of

Lemma B.6, bank i does not default, as it is the bank furthest away from the realized shocks. As a

result, as long as y > y∗p = (n − p)(a − v), in the unique payment equilibrium of the financial net-

work, all banks can meet their senior liabilities v in full. This can be established by verifying that

bank j — which is the bank facing the most amount of potential distress — can pay its senior debts.

In particular,

xj,j−1 = y + (p− 1)(a− ε− v),

guaranteeing that xj,j−1 + a− ε > v. Given that all banks can meet their senior liabilities, we have

xs+1,s = y + τ(a− v)− pε

where s = i+ τ is the index of the last bank on the chain that defaults. On the other hand, given that

s+ 1 does not default, we have y ≤ a− v + xs+1,s. As a result,

τ =

⌈
pε

a− v

⌉
− 1 ≥ pε

a− v
− 1.
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Hence, when shocks hit p consecutive banks on the credit chain, the number of bank failures reaches

the upper bound established by Lemma B.5, implying that the ring network is the least resilient

financial network.

Proof of part (b). The proof follows a logic similar to that of Proposition 6. We first prove that if

ε > ε∗p, then the complete network is the least stable and resilient financial network. In particular, we

show that all banks default. By Lemma B.6, the p distressed banks default on their senior liabilities.

The remaining n− p banks do not default only if

(n− p− 1)
y

n− 1
+ (a− v) ≥ y.

The above inequality, however, can hold only if y < ŷp = (n− 1)(a− v)/p ≤ y∗p. Hence, the complete

network is the least resilient and the least stable financial network as all n banks default.

We next show that if ε > ε∗p, then all n banks in the ring network fail as well. Suppose not, and that

there exists a bank that can pay all its creditors in full. On the other hand, by Lemma B.6, there is

also a bank that defaults on its senior liabilities v. Consider the path on the ring network connecting

bank j to bank l, such that (i) j defaults on its senior debt; (ii) l pays all its creditors in full; and

(iii) all banks on the path default but can pay back their senior debt. Denote the length of the path

connecting j to l by τ (see Figure C.1), and suppose that there are h negative shocks realized on this

path.

j l
length = τ

Figure C.1. There are τ banks connecting j to l, all of which default, but can meet their senior liabilities.

Given that j does not pay anything to its junior creditor (which is the first bank on the path connect-

ing it to l) and that l does not default, we have (τ + 1)(a− v)− hε ≥ y, implying that

τ >
y∗p + hε∗p
a− v

− 1

= n− p− 1 +
hn

p
.

On the other hand, the remaining p − h shocks hit banks that are not on the path connecting j to l.

Thus, the total number of defaults is at least τ + p− h, implying

]defaults > n− 1 + h

(
n

p
− 1

)
≥ n− 1.

This, however, contradicts the assumption that at least one bank does not default.
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Finally, consider a δ-connected financial network with the corresponding partition (S, Sc) such

that |Sc| = p. Note that by definition, max{yij , yji} ≤ δy for all i ∈ S and j ∈ Sc. Therefore, for any

bank i ∈ S, it must be the case that
∑

j∈S yij ≥ y − pδy. On the other hand, in the case that all p

negative shocks hit the banks in Sc, any bank i can meet its liabilities in full as long

a− v +
∑
j∈S

yij ≥ y.

Thus, as long as δ < (a − v)/(py), then no bank in S defaults, establishing that the given financial

network is strictly more stable than the complete financial network.

Proof of part (c). An argument similar to the one invoked in the proof of part (b) shows that the

when ε > ε∗p and y > ŷp, all banks in the complete network default. Therefore, the complete network

is the least stable and resilient financial network.

To prove that the ring financial network is more stable than the complete network, we show that

there exists a realization of the shocks for which at least one bank in the ring network does not de-

fault. In particular, consider the situation in which p consecutive banks, labeled 1 through p, are

hit with negative shocks. By Lemma B.6, in the unique payment equilibrium, bank p defaults on its

senior debt. Therefore, the length of the cascade of defaults following bank p, denoted by τ , satisfies

τ(a− v) < y ≤ (τ + 1)(a− v).

Thus, the number of defaults in the whole network is

]defaults = p+ τ

< p+
y∗p

a− v
= n,

implying that at least one bank does not default. Hence, the ring network is strictly more stable than

the complete network.

Proof of Proposition 10

The proofs of parts (a) and (b) are similar to those of Propositions 4 and 6, respectively, and are

thus omitted. To prove part (c), first consider the complete financial network and without loss of

generality, assume that bank 1 is hit with the negative shock. It is easy to verify that, as long as

ε∗(ζ) < ε < ε∗(ζ), the unique payment equilibrium is given by

(x1, `1) = (a− v − ε+ ζA+ y,A)

(xi, `i) =

(
y,
ε− n(a− v)− ζA

ζ(n− 1)

)
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Therefore, the total liquidation across the financial network satisfies

n∑
i=1

ζ`i = ε− n(a− v). (0)

Next consider the ring financial network. Again, it is east to verify that if bank 1 is hit with the

negative shock, then the total amount of liquidation across the financial network satisfies

n∑
i=1

ζ`i = τζA+ [ε− (τ + 1)(a− v)− τζA]+, (0)

where τ = dε/(a − v + ζA)e − 1 is the number of defaults. Comparing (0) to (0) then immediately

implies that the extent of liquidation in the complete financial network is strictly smaller than the

ring financial network. Hence, the former is strictly more stable and resilient than the latter.

Finally, consider the financial network depicted in Figure 2 with q = 1. Suppose that bank 1 is

hit with a negative shock, which immediately implies that banks 1 and 2 default and liquidate their

projects entirely, whereas all other banks can meet their liabilities in full. Consequently,

n∑
i=1

ζ`i = 2ζA.

Comparing the above to (0) shows that as long as ε > ε∗(ζ)+ζA, then the given 0-connected network

is strictly more stable and resilient than the complete financial network.

Proof of Proposition 11

The proof of this proposition is similar to those of Propositions 4 and 6, and hence is omitted.

Proof of Proposition 12

Proof of part (a). The proof closely follows the proof of the second part of Lemma B.6. In particular,

suppose that ε > (a− v)
∑n

k=1 θk/θj , but all banks can meet their liabilities to the senior creditors in

full. Thus, by the definition of the payment equilibrium,

zi +
∑
k 6=i

xik ≥ θiv +
∑
k 6=i

xki,

for all banks i. Summing over all i implies

a

n∑
i=1

θi − θjε ≥ v
n∑

i=1

θi,

which is a contradiction. Thus, the distressed bank j defaults on its liabilities to the senior creditors.
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Proof of part (b). In the presence of a large shock to bank j, all other banks default if and only if

xi < θiy for all i, where xi’s are the solutions to the following collection of equations:

xi = θi(a− v) +
∑
k 6=j

qikxk.

Comparing the above equation to (5), however, implies that xi = (a− v)m̂ij . Thus, all banks default

if and only if m̂ij < θim
∗, completing the proof.

Proof of Proposition A.1

Let {χt}t≥0 denote the discrete-time, discrete-space Markov chain with the transition probability

matrix Q; that is, P(χt+1 = j|χt = i) = qij . Also, let τij denote the number of time steps that it takes

to visit state j for the first time; that is, τj = min{t ≥ 0 : χt = j}. Therefore, the mean hitting time of

state j conditional on starting from state i is given by

Ei[τj ] =

∞∑
t=1

tP(τj = t|χ0 = i)

=

∞∑
t=1

n∑
k=1

tP(τj = t, χ1 = k|χ0 = i)

=

n∑
k=1

qik

∞∑
t=1

tP(τj = t|χ1 = k),

implying that the mean hitting times satisfy the following fixed point equation:

Ei[τj ] = 1 +

n∑
k=1

qikEk[τj ].

This equation, however, is identical to equation (3). Furthermore, given the argument in the proof

of Lemma 1, the equation has a unique solution. Therefore, Ei[τj ] = mij .

Proof of Proposition A.2

Levin, Peres, and Wilmer (2009, Lemma 10.10) show that in any reversible Markov chain and for any

three states i, j and k, we have Ei[τj ] +Ej [τk] +Ek[τi] = Ej [τi] +Ek[τj ] +Ei[τk]. On the other hand, by

Proposition A.1, the harmonic distances in the financial network are equal to the mean hitting times

in the corresponding Markov chain, establishing (A1).

Proof of Corollary A.1

Pick an arbitrary bank k, and create an ordering of the rest of the banks according to the value of

mik −mki. More specifically, let bank i appear before bank j if mik −mki ≥ mjk −mkj . Proposition

A.2, on the other hand, requires (A1) to hold. Consequently, it must be the case that mij ≥ mji.
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Proof of Proposition A.3

Kirkland and Neumann (2012, Theorem 6.2.1) show that Markov chain mean hitting times satisfy the

triangle inequality. Thus, by Proposition A.1, the harmonic distances satisfy the triangle inequality

as well.

Proof of Proposition A.4

Equation (B25) in the proof of Lemma 1 establishes that

1

n

∑
j 6=i

mij =

n∑
k=2

1

1− λk
,

where {λ2, . . . , λn} are then−1 smallest eigenvalues of matrixQ (that is, excludingλ1 = 1). Given that

the right-hand side above is independent of i, it is immediate that the average harmonic distance

from bank i to all other banks is an invariant property of the financial network.
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