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This appendix contains detailed instructions for the Markov chain Monte Carlo (MCMC) al-
gorithm employed in the paper. The appendix first describes the steps for the algorithm followed
by definitions of the vectors and matrices involved. Secondly, the appendix offers details on the
location of the data.

MCMC Estimation Algorithm for Censored Outcomes

1. Sample β from the distribution β |y,y∗,θ \ β. 1

2. Sample Ω from the distribution Ω|y,y∗,θ \ Ω in a one block, multi-step procedure.

3. For i ∈ N1, sample y∗
1 from the distribution y∗

1|y,θ,y∗\ y∗
1.

4. For i ∈ N2, sample y∗
2 from the distribution y∗

2|y,θ,y∗\ y∗
2.

5. For i ∈ N2o, sample y∗
3 from the distribution y∗

3|y,θ,y∗\ y∗
3.

6. For i ∈ N3o, sample y∗
4 from the distribution y∗

4|y,θ,y∗\ y∗
4.

7. For i ∈ N1o, sample y∗
5 from the distribution y∗

5|y,θ,y∗\ y∗
5.
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1The notation “\” represents “except”, e.g., y∗\ y∗
1 says all elements in y∗ except y∗

1 .
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Step 1: Sampling β
Sample β |y∗,θ \ β ∼ N (b,B), where

b = B(B−1
0 b0 +

∑
i∈N1

J′
CX

′
iCΩ

−1
C y∗

iC +

∑
i∈N2

J′
DX

′
iDΩ

−1
D y∗

iD +
∑
i∈N3

J′
AX

′
iAΩ

−1
A y∗

iA),

B = (B−1
0 +

∑
i∈N1

J′
CX

′
iCΩ

−1
C XiCJC +

∑
i∈N2

J′
DX

′
iDΩ

−1
D XiDJD +

∑
i∈N3

J′
AX

′
iAΩ

−1
A XiAJA)

−1.

Step 2: Sampling Ω
Sample Ω|y,y∗,θ \ Ω in a one block, nine-step procedure by first drawing Ω11 , Ωtt·l = Ωtt −
ΩtlΩ

−1
ll Ωlt, and Blt = Ω−1

ll Ωlt, and then reconstructing Ω from these quantities

2. (a) Ω11|y,y∗,θ \ Ω ∼ IW(ν − 1 + n, Q11 +
∑

N1,N2,N3
η∗
i1η

∗′
i1)

i. η∗
i1 = y∗i1 − xi1J1β, where J1 =

[
1 0 0 0 0

]
1×K

(b) Ω22·1|y,y∗,θ \ Ω ∼ IW(ν + n2 + n3, R22·1)

(c) B12|y,y∗,Ω22·1 ∼ MN (R−1
11 R21,Ω22·1 ⊗R−1

11 )

(d) Define Ωu =

(
Ω11 Ω12

Ω21 Ω22

)
(e) Ω55·1|y,y∗,θ \ Ω ∼ IW(ν + n1, R55·1)

(f) B15|y,y∗,Ω55·1 ∼ MN (R−1
11 R51,Ω55·1 ⊗R−1

11 )

(g) Ω33·u|y,y∗,θ \ Ω ∼ IW(ν + n2,R33·u)

(h) Bu3|y,y∗,Ω33·u ∼ MN (R−1
u R3u,Ω33·u ⊗R−1

u )

(i) Ω44·u|y,y∗,θ \ Ω ∼ IW(ν + n3,R44·u)

(j) Bu4|y,y∗,Ω44·u ∼ MN (R−1
u R4u,Ω44·u ⊗R−1

u )

where R = Q+
∑

η∗
iη

∗′
i , and the following subsections are obtained by partitioning R to con-

form to Q, and Rll·t = Rll −RltR
−1
tt Rtl. From these sampling densities, Ω can be recovered.

Steps 3-7: Sampling y∗

y∗
1|y,θ,y∗\ y∗

1 ∼ T N (−∞,0)(x
′
i1β1 + E(εi1|εi\1), var(εi1|εi\1)), i ∈ N1,

y∗
2|y,θ,y∗\ y∗

2 ∼ T N (−∞,0)(x
′
i2β2 + E(εi2|εi\2), var(εi2|εi\2)), i ∈ N2,

y∗
3|y,θ,y∗\ y∗

3 ∼ T N (−∞,0)((x
′
i3 yi1)β3 + E(εi3|εi\3), var(εi3|εi\3)), i ∈ N2o,

y∗
4|y,θ,y∗\ y∗

4 ∼ T N (−∞,0)((x
′
i4 yi1 yi2)β4 + E(εi4|εi\4), var(εi4|εi\4)), i ∈ N3o,

y∗
5|y,θ,y∗\ y∗

5 ∼ T N (−∞,0)(x
′
i5β5 + E(εi5|εi\5), var(εi5|εi\5)), i ∈ N1o.
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Definitions

Priors: It is assumed that β has a joint normal distribution with mean β0 and variance B0,
and (independently) that the covariance matrix Ω has an inverted Wishart distribution with pa-
rameters υ and Q,

π(β,Ω) = N (β |β0, B0)IW(Ω|υ,Q).

Data: For the i-th observation, define the following vectors and matrices,

y∗
iC = (y∗i1, y

∗
i5)

′, y∗
iD = (y∗i1, y

∗
i2, y

∗
i3)

′, y∗
iA = (y∗i1, y

∗
i2, y

∗
i4)

′,

XiC =

(
x′
i1 0
0 x′

i5

)
, XiD =

 x′
i1 0 0
0 x′

i2 0
0 0 (x′

i3 yi1)

 , XiA =

 x′
i1 0 0
0 x′

i2 0
0 0 (x′

i4 yi1 yi2)

 .

Let N1 = {i : yi1 = 0} be the n1 observations in the non-selected sample and N2 = {i : yi1 >
0 and yi2 = 0} be the n2 observations in the selected untreated sample. Set N3 = {i : yi1 >
0 and yi2 > 0} to be the n3 observations in the selected treated sample.

In order to isolate the vectors and matrices that correspond to the 3 different subsets of the
sample, define

JC =

(
1 0 0 0 0
0 0 0 0 1

)
2×K

, JD =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


3×K

and JA =

 1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


3×K

where K = k1 + k2 + k3 + k4 + k5, which represents the number of covariates in each equation.
For i ∈ N1 (non-selected sample),

η∗
iC = y∗

iC −XiCJCβ,

for i ∈ N2 (selected untreated sample),

η∗
iD = y∗

iD −XiDJDβ,

and for i ∈ N3 (selected treated sample),

η∗
iA = y∗

iA −XiAJAβ,

Finally, N2o is defined as the truncated portion of the N2 sample in y3, N3o is defined as the
truncated region of the N3 sample in y4, and N1o is defined as the discrete part of the N1 sample
in y5 since all the equations are Tobit equations with censored dependent variables.
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Data

• RFC Card Index to Loans Made to Banks and Railroads, 1934-57

– National Archives, College Park, MD

– Record Group 234 / Reconstruction Finance Corp.

• Declined and Cancelled Loans, 1933-1941

– National Archives, College Park, MD

– Record Group 234 / Reconstruction Finance Corp.

– Location: 570

• Paid Loans, 1933-1941

– National Archives, College Park, MD

– Record Group 234 / Reconstruction Finance Corp.

– Location: 570

• Rand McNally Banker’s Directory

– Years 1932 - 1935

Programs

The MCMC algorithm employed in this paper follows from the steps listed above. This algorithm
extends the sampling techniques developed in the below reference:

Chib, Siddhartha, Edward Greenberg, and Ivan Jeliazkov. 2009. ”Estimation of Semiparamet-
ric Models in the Presence of Endogeneity and Sample Selection.” Journal of Computational and
Graphical Statistics 18(2): 321-348.

The GAUSS programs are available in the supplementary materials associated with Chib, Green-
berg, and Jeliazkov (2009) found at the below link.

http://amstat.tandfonline.com/doi/suppl/10.1198/jcgs.2009.07070
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