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Online Appendix

Al. Welfare and the share of domestic trade

Here we derive equation (2), showing welfare changes as a function of changes in the domestic
share and the mass of domestic entrants. This equation resembles an un-numbered equation in
Arkolakis, Costinot and Rodriguez-Clare (2012), p. 111. However, it reduces the determinants of
welfare to just changes in own trade and changes in the mass of entrants. Along the way, we set
up the model in general terms: C' asymmetric countries, and general distribution functions, which
provides equation (2) and other useful results fo the calibration.

Bilateral trade can be expressed as the product of M¢,, the mass of entrants from ¢ into destina-
tion n, and the mean export revenues of exporters from % serving market n.
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where o, is the cutoff cost over which firms in ¢ would make a loss in market n.

With demand being CES (denoted o), equilibrium markups (m = ¢ /(o — 1)) being constant,
and trade costs (7,,;) being iceberg, the export value of an individual firm with productivity 1/« is
given by
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with Y, denoting total expenditure and P, the price index of the CES composite.
Following Helpman, Melitz and Rubinstein (2008), it is useful to define
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Now we can re-express aggregate exports from i to n as
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Since market clearing and balanced trade imply Y; = w;L;, we can replace w; with Y;/L;. We
also divide X, ; by Y, to obtain the expenditure shares, m,,; for importer n on exporter ¢:
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Gross profits in the CES model are given by x,,; /0. Hence, assuming that fixed costs are paid using
labor of the origin country, the cutoff cost such that profits are zero is determined by z,,;(a*) =
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ow; fri. Combined with w; = Y;/L; we obtain:
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Welfare in this model is given by real income. Inverting equation (A7), welfare can be expressed
in terms of the domestic cutoff:
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This is equation (1) in the main text. Since a; is the sole endogenous variable, a change in
international trade costs implies that = dgg_". The next step is to relate changes in the

cutoff to changes in trade shares. To do th1s we divide both sides of equation (A6) by P!, and
differentiate, to obtain:
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Analyzing the dV/V term first, we can see from the definition in equation (A3) that it is the
product of the elasticity of V' with respect to the cutoff times the percent change in the cutoff. We
follow ACR in denoting the first elasticity as +; it is given by
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From the definition of V' and equilibrium cutoffs in (A7), we can write the change in V' as
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Combining (A9) and (A11) leads to
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Differentiating bilateral trade shares in equation (AS),
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Hence, the difference in those share changes gives
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Let us focus now in the difference in V' term. From (A11), we can write:
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We then plug (A16) into (A15) to obtain
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Therefore the term in square brackets inside (A12) is equal to
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After replacing dYL — d;,j n= = daa , and canceling out the terms involving ,,,, we can substitute
the result into (A12) to obtain
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Noting that only dr,,, /7, terms depend on ¢ we can re-arrange as
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Using ) -, Tne drae — (), we can finally express the welfare change as
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which after defining €,,,, = 1 — 0 — ¥, is equation (2) in the text.
A2. How MI (entry share) affects welfare in the symmetric model

Under the trading regime, our micro-data calibration procedure is characterized by the two
equilibrium relationships (3) and (4), the two moment conditions M1 — G(«;) = 0 and
M2 — G(a2)/G(a}) = 0, and four unknowns (o, oc; 2, fo).

Differentiating the two moment conditions with respect to M1 we obtain
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Simple manipulations of the differentiated system also yields
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where (AT, AF, AT) are positive parameters. Looking at the Pareto version of definition (5), it is

clear that —S22)_ _ _G(2a) () which means that the right hand side of (A24) is zero under
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Pareto. The;eforg, a change of M1 is i) not related to changes in f,, ii) affecting all cutoffs in the
same way, leaving export propensity, but also gains from trade unaffected. Under log-normal on

the contrary, G éfxi)* Glag — > (0 (see (5)). Hence in the LN case,
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Combined with (A22), equations (A23), (A24) and (A25) thus imply that
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Let us consider now the domestic cutoff in autarky, characterized by G(ag,) [H(a4) — 1] =
fE. Differentiating this relationship we get
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We conclude from the previous computations that an increase in M1 leads to an increase in both o))
and o 4, namely a less selective domestic market both in autarky and in the trading equilibrium.
The change in trade gains is equal to
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The sign of the previous relationship cannot be characterized algebraically and we consequently
rely on our quantitative procedure to show that it is positive under log-normal.
A3. Distribution parameters for Chinese exports to Japan
Table A1 replicates Table 1 for the case of Chinese exports to Japan in 2000.

A4. Distributions of total sales

Some of the prior literature asserting Pareto is based on firm size distribution, rather than looking
at the distribution of export sales from one origin in a particular importing country (which is also
done in Eaton et al. (2011)).

The mapping between productivity distribution parameters and sales distributions is less clear
when considering total sales of firms (domestic sales plus exports to all destinations). Chaney

4



TABLE A1—PARETO VS LOG-NORMAL: QQ REGRESSIONS (CHINESE EXPORTS TO JAPAN IN 2000).

6] (2) 3) “4) &) (6) ) ®)

Sample: all top 50% top25% top5% top4% top3% top2% top 1%

Obs: 24832 12416 6208 1241 993 745 496 248
Log-normal: RHS = ®~!(F;), coeff = U

ot (Fz) 2.558a 2.125a 1.950a 1.936a 1934a 19292 1910a 1.970a

R? 0.986 0.995 0.999 0998 0998 0997  0.995 0.992

v 0.853 0.708 0.650 0.645 0.645 0.643  0.637 0.657

Pareto: RHS = — In(1 — F}), coeff = 1/0
—In(1—F;) 2.194a 1.239a 0946a 0.718a 0.698a 0.674a 0.640a  0.618a

R? 0.725 0.930 0.971 0.990 0991 0992  0.995 0.994
0 1.367 2422 3.170 4.175 4296 4452  4.688 4.854

Notes: the dependent variable is the log exports of Chinese firms to Japan in 2000. The standard deviation of log exports in this
sample is 2.576, which should be equal to # if x is log-normally distributed and to 1/6 if distribution if Pareto. v and 6 are
calculated using o = 4. Standard errors still have to be corrected.

(2013) and Di Giovanni et al. (2011) are examples using total exports and sales, respectively,
for French firms. Both papers truncate the samples. In Tables A2 and A3, and figure Al, we
corroborate the evidence in favor of log-normality of total sales of French and Spanish firms. We
also show that the superior performance of log-normal is not driven by exports of intermediaries.
For both the French and Chinese export samples, restricting to non-intermediaries yields similar
results.

TABLE A2—PARETO VS LOG-NORMAL: QQ REGRESSIONS (FRENCH FIRMS TOTAL SALES IN 2000).

6] 2) 3) “4) (&) (6) ) ®)

Sample: all top 50% top25% top5% top4% top3% top2% top 1%

Obs: 92988 46494 23247 4649 3719 2789 1860 930
Log-normal: RHS = ®~!(F;), coeff = U

ot (Fz) 1.790a  2.076a  2.330a 2.579a 2.586a 2.603a 2.610a  2.586a

R? 0.984 0.990 0.996 0999 0998 0998  0.997 0.992

v 0.597 0.692 0.777 0.860 0.862 0.868 0.870 0.862

Pareto: RHS = — In(1 — F}), coeff = 1/0
—In(1—F;) 1.658a 1.251a 1.143a  0.955a 0.932a 0906a 0.869a  0.806a

R? 0.844 0.988 0.991 0.991 0.991 0.990  0.990 0.989
0 1.809 2.398 2.624 3.140  3.220 3312 3452 3.723

Notes: the dependent variable is the log exports of French total sales in 2000. The standard deviation of log exports in this sample
is 1.805, which should be equal to ¥ if x is log-normally distributed and to 1/6 if distribution if Pareto. v and 6 are calculated
using o = 4. Standard errors still have to be corrected.

AS5.  Comparison of QQ estimator to other methods

One alternative to the QQ estimators is to use method of moments. In this case, we infer the
distributional parameters from the means and standard deviations of log sales. We can use equa-
tions (6) and (7) to obtain an idea of what those coefficients should be. With log of sales distributed
Normal, they have a mean value of /} and a standard deviation of 17.~In the Pareto case, the log of
sales have a mean value of In 41 / 0, and a standard deviation of 1 / 0. In this sample, the standard
deviation of log sales is 2.393, hence predicted coefficients in Table 1 are 2.393 for Log-Normal
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TABLE A3—PARETO VS LOG-NORMAL: QQ REGRESSIONS (SPANISH FIRMS TOTAL SALES IN 2000).

6] 2) 3) “4) &) (6) (7 ®)

Sample: all top 50% top25% top5% top4% top3% top2% top 1%

Obs: 87998 43999 21999 4400 3520 2640 1760 880
Log-normal: RHS = ®~!(F;), coeff = U

ot (FZ) 1.588a 1.859a  2.095a 2.419a 2.435a 2.462a 2510a  2.599a

R? 0.986 0.988 0.992 0998 0997 099  0.995 0.991

v 0.529 0.620 0.698 0.806  0.812  0.821  0.837 0.866

Pareto: RHS = — In(1 — F}), coeff = 1/0
—In(1—F;) 148% 1.122a 1.032a 0.899a 0.880a 0.86la 0.840a 0.814a

R? 0.866 0.990 0.995 0995 09% 0997  0.997 0.996
0 2.015 2.674 2.907 3337 3409 3486  3.573 3.687

Notes: the dependent variable is the log exports of Spanish total sales in 2000. The standard deviation of log exports in this sample
is 1.599, which should be equal to ¥ if x is log-normally distributed and to 1/6 if distribution if Pareto. v and 6 are calculated
using o = 4. Standard errors still have to be corrected.

FIGURE A1. QQ GRAPHS ON TOTAL SALES
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and Pareto independently of truncation. The un-truncated sample estimate almost exactly matches
that prediction for the log-normal case, when most estimates of Pareto case are quite far off.
There is a close relationship between the QQ estimator for the Pareto and the familiar log rank-
size regressions examined by Gabaix and Ioannides (2004) since both rank, 1 + (n — ), and one
minus the empirical CDF are linear in ¢. This closely resembles the QQ estimator since, following
the suggestion of Bury (1999), we estimate the empirical CDF as F; = (i — 0.3)/(n + 0.4).
Thus, the empirical CDF is an affine transformation of the rank. The coefficient on log sales is
-0 = —ﬁ. Eaton et al. (2011), Di Giovanni et al. (2011) are recent examples that pursue this
approach and it is also referred to by Melitz and Redding (2013) in their parameterization of M3.

A6. Macro-data simulations

In this section, we adopt the M3’ approach where the underlying micro parameters v and 6 are
calibrated to match the international trade elasticity, €,. Under the Pareto distribution €, = ¢; =

—6. Thus, we calibrate the Pareto heterogeneity parameter as § = —M3’. Under log-normal
1 Ina
v v

where h(z) = ¢(x)/®(x), the ratio of the PDF to the CDF of the standard normal. In this case,
the calibration procedure will therefore select values for f, f, and v such that target values for
M1, M2, and M3’ are matched.

The most obvious empirical target value for M3’ (recommended by Arkolakis, Costinot and
Rodriguez-Clare (2012)) comes from estimates of the gravity literature regressing trade flows on
bilateral applied tariffs. Head and Mayer (2014) survey this literature and report a median estimate
of -5.03, which we take as our target for both Pareto and log-normal. The left panel of figure A2
plots the GFT as in figures 2 and 3, and the right panel graphs the three relevant trade elasticities:
€? for Pareto, constant at -5.03, e&N and e{iN, the international and domestic elasticities for the log-
normal case. By construction, eIw‘N coincides with Pareto at the benchmark trade cost (7 = 1.83).
As 7 declines, the elasticity falls in absolute value. The domestic elasticity, €5~, is uniformly
smaller in absolute value than e-N. It rises with increases in 7 because higher international trade
costs make the domestic market easier in relative terms.

Despite this large heterogeneity in trade elasticities between Pareto and log-normal, gains from
trade happen to be very proximate in this symmetric country calibration. While the GFT are very
similar for this set of parameters, they are not identical, as the zoomed-in box reveals. Second,
they can be much more different when one changes some parameter targets, in particular the share
of exporters. Third, this calibration searches for parameters in order to fit a unique trade elasticity
(the international one), while the LN version of the model features two elasticities that depend
crucially on v. Calibrating the model to fit an average of the two trade elasticities in figure A3, the
Pareto and log-normal GFT again diverge from each other.

A7. Generative processes for log-normal and Pareto

Because the Pareto distribution has been thought to characterize a large set of phenomena in
both natural and social sciences, much effort has gone into developing generative models that
predict the Pareto as a limiting distribution. The building block emphasized in the literature, see
especially Gabaix (1999), is Gibrat’s law of proportional growth. Applied to sales of an individual
firm 4 in period ¢, Gibrat’s Law states that X, ;.1 = I';;X;;. The key point is that the growth
rate from period to period, I';; — 1 is independent of size. A confusion has arisen because it is
straightforward to show that the law of proportional growth delivers a log-normal distribution. In
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FIGURE A2. WELFARE GAINS CALIBRATED ON TRADE ELASTICITY
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period T’ size is given by

T
Xir = exp(ln X0 + Z InT)

t=1

The central limit theorem implies for large 7',

VT (E2E — Bar,] ) ~ A0V,

where E and V are the expectation and variance operators. Rearranging and, for convenience
only, initializing sizes at X;o = 1, In X;; is normally distributed with expectation TE[ln T';;] and
variance T'V[InT';;]. This implies X,z is log-normal with log-mean parameter i = TE[InT";,]
and log-SD parameter 7 = /TV[InT;].

This demonstration that Gibrat’s Law implies a limiting distribution that is log-normal echoes
similar arguments by Sutton (1997) for firms and Eeckhout (2004) for cities. The problem with
this formulation is that it is only valid for large 7" and yet as T' grows large, the distribution
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exhibits some perverse behavior. Assume that sizes are not growing on average, i.e. E[I';;] =
By Jensen’s Inequality, E[InI";;] < In(E[[';]) = 0. Since the median of X, is exp(i)
exp(TE[InT;]), the median should decline exponentially with time. The mode, exp (i — %) =
exp[T(E[InT;;] — V[InT';;])] should decline even more rapidly with time. Thus, as 7" becomes
large, Gibrat’s law with E[I";;] = 1 implies a distribution with a mode going to zero while the
variance is becoming infinite. Evidently something must be done to rescue Gibrat’s law from
generating degeneracy.

A variety of modifications to Gibrat’s Law have been investigated. Kalecki (1945) specifies
growth shocks that are negatively correlated with the level. This allows for a log-normal with
stable variance to emerge. Gabaix (1999) shows in an appendix that a simple change to the growth
process, X;+1 = 'y X + € with ¢ > 0 (the Kesten process) is enough to solve the problem
of degeneracy. But the resulting stable distribution is Pareto, not log-normal. Reed (2001) in-
stead assumes finite-lived agents with exponential life expectancies. This leads to a double-Pareto
distribution.
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