
Online Appendix for “Testing Game Theory in the Field:
Swedish LUPI Lottery Games”

Robert Östling, Joseph Tao-yi Wang, Eileen Y. Chou and Colin F. Camerer

A. The Symmetric Fixed-N Nash Equilibrium

Let there be a finite number of N players that each pick an integer between 1 and K.
If there are numbers that are only chosen by one player, then the player that picks the
lowest such number wins a prize, which we normalize to 1, and all other players get zero.
If there is no number that only one player chooses, everybody gets zero.
To get some intuition for the equilibrium in the game with many players, we first

consider the cases with two and three players. If there are only two players and two
numbers to choose from, the game reduces to the following bimatrix game.

1 2
1 0, 0 1, 0
2 0, 1 0, 0

This game has three equilibria. There are two asymmetric equilibria in which one player
picks 1 and the other player picks 2, and one symmetric equilibrium in which both players
pick 1.
Now suppose that there are three players and three numbers to choose from (i.e.,

N = K = 3). In any pure strategy equilibrium it must be the case that at least one
player plays the number 1, but not more than two players play the number 1 (if all three
play 1, it is optimal to deviate for one player and pick 2). In pure strategy equilibria
where only one player plays 1, the other players can play in any combination of the other
two numbers. In pure strategy equilibria where two players play 1, the third player plays
2. In total there are 18 pure strategy equilibria. To find the symmetric mixed strategy
equilibrium, let p1 denote the probability with which 1 is played and p2 the probability
with which 2 is played. The expected payoff from playing the pure strategies if the other
two players randomize is given by

π (1) = (1− p1)2 ,

π (2) =
[
(1− p1 − p2)2 + p2

1

]
,

π (3) =
[
p2

1 + p2
2

]
.

Setting the payoff from the three pure strategies yields p1 = 2
√

3 − 3 = 0.464 and p2 =
p3 = 2−

√
3 = 0.268.

In the game with N players, there are numerous asymmetric pure strategy equilibria
as in the three-player case. For example, in one type of equilibrium exactly one player
picks 1 and the other players pick the other numbers in arbitrary ways. In order to find
symmetric mixed strategy equilibria, let pk denote the probability put on number k.1

1We have not been able to show that there is a unique symmetric equilibrium, but when numerically
solving for a symmetric equilibrium we have not found any other equilibria than the ones reported below.
Existence of a symmetric equilibrium is guaranteed since players have finite strategy sets, see Lemma 6
in Partha Dasgupta and Eric Maskin (1986).
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In a symmetric mixed strategy equilibrium, the distribution of guesses will follow the
multinomial distribution. The probability of x1 players guessing 1, x2 players guessing 2
and so on is given by

f (x1, ..., xK ;N) =

{
N !

x1!···xK !
px11 · · · pxKK if

∑K
i=1 xi = N ,

0 otherwise,

where we use the convention that 00 = 1 in case any of the numbers is picked with zero
probability. The marginal density function for the kth number is the binomial distribution

fk (xk;N) =
N !

xk! (N − xk)!
pxkk (1− pk)N−xk .

Let gk (x1, x2, ..., xk;N) denote the marginal distribution for the first k numbers. In other
words, we define gk for k < K as

gk (x1, x2, ..., xk;N) =
∑

xk+1+xk+2+···+xK=N−(x1+x2+···+xk)

N !

x1!x2! · · ·xK !
px11 p

x2
2 · · · pxKK .

Using the multinomial theorem we can simplify this to2

gk (x1, x2, ..., xk;N) =
N !

x1! · · · xk!
px11 · · · p

xk
k

(pk+1 + pk+2 + · · ·+ pK)N−(x1+x2+···+xk)

(N − (x1 + x2 + · · ·+ xk))!
.

If k = K, then gk (x1, x2, ..., xk;N) = f (x1, x2, ..., xk;N). Finally, let hk (N) denote the
probability that nobody guessed k and there is at least one number between 1 to k − 1
that only one player guessed. This probability is given by (again if k < K)

hk (N) =
∑

(x1,...,xk−1): some xi=1
& x1+···+xk−1≤N

gk (x1, x2, ..., xk−1, 0;N) .

If k = K, then this probability is given by

hK (N) =
∑

(x1,...,xk−1): some xi=1
& x1+···+xk−1=N

f (x1, x2, ..., xK−1, 0;N) .

The probability of winning when guessing 1 and all other players follow the symmetric
mixed strategy is given by

π (1) = f1 (0;N − 1) = (1− p1)N−1 .

2The multinomial theorem states that the following holds

(p1 + p2 + · · ·+ pK)N =
∑

x1+x2+···+xK=N

N !

x1!x2! · · ·xK !
px11 p

x2
2 · · · p

xK
K ,

given that all xi ≥ 0.
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The probability of winning when playing 1 < k < K is given by3

π (k) = fk (0;N − 1)− hk (N − 1) ,

= (1− pk)N−1 − hk (N − 1) .

Similarly, the probability of winning when playing k = K is given by

π (K) = fK (0;N − 1)− hK (N − 1) .

In a symmetric mixed strategy equilibrium, the probability of winning from all pure
strategies in the support of the equilibrium must be the same. In the special case when
N = K and all numbers are played with positive probability, we can simply solve the
system of K − 2 equations where each equation is

(1− pk)N−1 − hk (N − 1) = (1− p1)N−1 ,

for all 2 < k < K and the Kth equation

(1− pK)N−1 − hK (N − 1) = (1− p1)N−1 .

In principle, it is straightforward to solve this system of equations. However, com-
puting the hk function is computationally explosive because it requires the summation
over a large set of vectors of length k − 1. Assuming N = K, the table below show the
equilibrium for up to eight players.4

3x3 4x4 5x5 6x6 7x7 8x8
1 0.4641 0.4477 0.3582 0.3266 0.2946 0.2710
2 0.2679 0.4249 0.3156 0.2975 0.2705 0.2512
3 0.2679 0.1257 0.1918 0.2314 0.2248 0.2176
4 0.0017 0.0968 0.1225 0.1407 0.1571
5 0.0376 0.0216 0.0581 0.0822
6 0.0005 0.0110 0.0199
7 0.0004 0.0010
8 0.0000

3The easiest way to see this is to draw a Venn diagram. More formally, let A = {No other player picks
k} and let B = {No number below k is unique}, so that P (A) = fk (0;N − 1) and P (B) = hk (N − 1).
We want to determine P (A ∩B), which is equal to

P (A ∩B) = P (A) + P (B)− P (A ∪B).

To determine P (A ∪B), note that it can be written as the union between two independent events

P (A ∪B) = P (B ∪ (B′ ∩A)) .

Since B and B′ ∩A are independent,

P (A ∪B) = P (B) + P (B′ ∩A).

Combining this with the expression for P (A ∩B) we get

P (A ∩B) = P (A)− P (A ∩B′).

4See Online Appendix B for details about how these probabilities were computed.
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These probabilities are close to the Poisson-Nash equilibrium probabilities. To see
this, the table below shows the Poisson-Nash equilibrium probabilities when N is equal
to K for 3 to 8 players. Note that all the fixed-N and Poisson-Nash probabilities for all
strategies in the 5x5 game and larger are within 0.02.

3x3 4x4 5x5 6x6 7x7 8x8
1 0.4773 0.4057 0.3589 0.3244 0.2971 0.2747
2 0.3378 0.3092 0.2881 0.2701 0.2541 0.2397
3 0.1849 0.1980 0.2046 0.2057 0.2030 0.1983
4 0.0870 0.1129 0.1315 0.1430 0.1492
5 0.0355 0.0575 0.0775 0.0931
6 0.0108 0.0234 0.0385
7 0.0020 0.0064
8 0.0002

In order to calculate the Nash equilibrium with a fixed number of players for higher N
and K, we have to use a different method (explained further in Online Appendix B). As is
shown in Figure A1, the Poisson and fixed-N equilibrium are practically indistinguishable
for n = 27 and K = 99 (parameters similar to those used in the lab experiment).

B. Computational and Estimation Issues

This appendix provides details about the numerical computations and estimations that
are reported in the paper. We have used STATA and MATLAB for all computations and
estimations.

Poisson-Nash Equilibrium

The Poisson-Nash equilibrium was computed in MATLAB through iteration of the equi-
librium condition (1). Unfortunately, MATLAB cannot handle the extremely small prob-
abilities that are attached to high numbers in equilibrium, so the estimated probabilities
are zero for high numbers (17 and above for the laboratory and 5519 and above for the
field).

Fixed-N Nash Equilibrium

To compute the equilibrium when the number of players is fixed and commonly known for
up to eight players, we programmed the functions fk, fK , hk and hK in MATLAB and then
solved the system of equations characterizing equilibrium using MATLAB’s solver fsolve.
Note that the hk function includes the summation of a large number of vectors. For high
k and N the number of different vectors involved in the summation grows explosively.
To compute the equilibrium for larger N ,5 let pk be the symmetric equilibrium proba-

bilities and let qk be the conditional probability that a player picks number k conditional
on not having guessed a lower number (so qk depends on p1,p2,..., pk). This implies that

5We thank Dylan Thurston for suggesting this algorithm to speed up the computation.
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q1 = p1, q2 = p2/(1 − q1), q3 = p3/ [(1− q1)(1− q2)], q4 = p4/ [(1− q1)(1− q2)(1− q3)],
and so on.
For each number k, and each m with 0 ≤ m < N , we compute recursively the prob-

ability lk,m that the there is no winner below k and m other players have not guessed
numbers below k:

lk+1,m =
∑

m′≥m,m′ 6=m+1

lk,m′

(
m′

m

)
q

(m′−m)
k (1− qk)m .

Based on these probabilities the probability of winning on each number is

wk =

{ ∑N−1
m=0 lk,m(1− qk)m if k < K

lk,0 if k = K
.

As an example, consider the case when N = 3 and K = 3. First, by the assumption
that there are N players, l1,2 = 1 and l1,1 = l1,0 = 0. For k = 2 and k = 3 the
corresponding probabilities are

l2,2 =
∑

m′≥m,m′ 6=m+1

lk,m′

(
m′

m

)
q

(m′−m)
k (1− qk)m = l1,2 (1− g1)2 = (1− q1)2

l2,1 = l1,1 (1− q1) = 0

l2,0 = l1,0 + l1,2q
2
1 (1− q1)0 = q2

1

l3,2 = l2,2 (1− q2)2 = (1− q1)2 (1− q2)2

l3,1 = l2,1 (1− q2) = 0

l3,0 = l2,0 + l2,2q
2
2 = q2

1 + (1− q1)2 q2
2 =

(
2
√

3− 3
)2

+
(

1− 2
√

3 + 3
)2

0.52

The winning probabilities are given by

w1 = l1,2(1− q1)2 = (1− q1)2

w2 = l2,0 + l2,1 (1− q2) + l2,2 (1− q2)2 = q2
1 + (1− q1)2 (1− q2)2

w3 = l3,0 = q2
1 + (1− q1)2 q2

2

Set these equal gives q1 = 2
√

3 − 3 and q2 = 1/2. This implies that p1 = 2
√

3 − 3 =
0.4641, p2 = (1−2

√
3+3)/2 = 0.26795 and p3 = 1−2

√
3+3−(1−2

√
3+3)/2 = 0.26795.

Cognitive Hierarchy with Quantal Response

Calculating the cognitive hierarchy prediction for a given τ and λ is straightforward.
However, the cognitive hierarchy prediction is non-monotonic in τ and λ, implying that
the log-likelihood function is not generally smooth.
In order to calculate the log-likelihood, we assume that all players play according

to the same aggregate cognitive hierarchy prediction, i.e., the log-likelihood function is
calculated using the multinomial distribution as if all players played the same strategy.
For the field data, we calculated the log-likelihood for the daily average frequency for
each week, but the frequency was rounded to integers in order to be able to calculate
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the log-likelihood. For the lab data, we instead calculated the log-likelihood by summing
the frequencies for each week since we did not want unnecessary estimation errors due to
rounding off to integers.
Maximum likelihood estimation for the field data is computationally demanding so we

used a relatively coarse two-dimensional grid search. We used a 50x50 grid and restricted
τ to be between 0.05 and 12, and restricted λ to be between 0.0001 and 0.05. We tried
different bounds on the parameters and different grid sizes, but that did not change the
results. The log-likelihood function for the first week is shown in Figure A8. The log-
likelihood appears relatively smooth, but since we have been forced to use a very coarse
grid we might not have found the global maximum.
For the maximum likelihood estimation of the lab data, we used a one-dimensional

100,000 grid search and let λ vary between 0.001 and 30. The log-likelihood function
for the first week is shown in Figure A9. It is clear that the log-likelihood function non-
smooth, but given that we have used such a fine grid we are confident that the estimated
parameters are global optima. Figure A10 shows the log-likelihood function from the first
week when τ is fixed at 1.5. Figure A7 shows the cognitive hierarchy prediction week-by-
week for the laboratory data when τ is 1.5.

Model Selection

Since the Poisson-Nash equilibrium probabilities are zero for high numbers, the likelihood
of the equilibrium prediction is always zero. However, to be able to compare the equilib-
rium prediction with the cognitive hierarchy model, we calculate the log-likelihoods using
only data on numbers up to 5518 (field) and 16 (laboratory). These log-likelihoods can-
not be directly compared with the log-likelihoods in Table 3 and 5, however, since those
are calculated using data on all numbers. For comparison, we therefore compute the
log-likelihoods for the cognitive hierarchy model in the same way as for the equilibrium
prediction. In order for these probabilities to sum up to one, we divide the probabilities
by the total probability attach to numbers up to the threshold (5518 or 16). Using the
estimated parameters reported in Table 3, Table A1 shows the log-likelihoods only based
on numbers up to 5518.

Week 1 2 3 4 5 6 7
Log-likelihood Eq. (<5519) -43364 -32072 -28452 -27759 -28087 -21452 -19719
Log-likelihood CH (< 5519) -23072 -20035 -17141 -15527 -15475 -15534 -14591

Table A1: Log-likelihoods for Poisson-Nash equilibrium and cognitive hierarchy for field
data up to 5518

The log-likelihoods are higher for the cognitive hierarchy model in all weeks. The cog-
nitive hierarchy model is estimated with two parameters, while the equilibrium prediction
has no free parameters. One way to compare the models is to use Gideon Schwarz (1978)
information criterion which penalizes a model depending on the number of estimated pa-
rameters by subtracting a factor log (n)×m/2 from the log-likelihood value, where n is the
number of observations and m the number of estimated parameters. The log-likelihoods
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in Table A1 are calculated based on daily averages, so the penalty for the cognitive hier-
archy model is approximately log (53783) = 10.9, indicating that the cognitive hierarchy
model is the better model in all weeks. Schwarz information criterion penalizes the number
of estimated parameters more harshly than for example Aikake’s information criterion.
However, it should be kept in mind that the two parameters in cognitive hierarchy model
are estimated using the data, whereas the equilibrium prediction is not estimated at all,
so any comparison based on information criteria is likely to be unfair.

Week 1 2 3 4 5 6 7
Log-likelihood eq. (<17) -192.9 -95.3 -91.3 -81.4 -93.0 -59.7 -145.2
Log-likelihood CH (<17) -76.6 -61.2 -54.13 -45.5 -49.2 -43.9 -54.7
Log-likelihood CH τ = 1.5 (<17) -79.0 -52.9 -63.4 -56.5 -56.9 -65.3 -70.3
BIC eq. (<17) -192.9 -95.3 -91.3 -81.4 -93.0 -59.7 -145.2
BIC CH (<17) -79.8 -64.5 -57.4 -48.8 -52.5 -47.2 -58.0
BIC CH τ = 1.5 (<17) -82.3 -56.3 -66.7 -59.8 -60.2 -68.6 -73.6

Table A2: Log-likelihood and Schwarz information criterion (BIC) for the cognitive hier-
archy and equilibrium models in the laboratory (up to 16)

Table A2 reports the restricted log-likelihoods and the corresponding values of the
Schwarz information criterion for the laboratory data. Based on Schwarz information
criterion, the cognitive hierarchy model outperforms equilibrium in all weeks, but the
equilibrium prediction does better than the cognitive hierarchy model with τ = 1.5 in the
sixth week.

Equivalent Number of Observations

To calculate ENO for the Poisson LUPI game, suppose the model predicts probability
pk for choosing number k. By the independent actions property of Poisson games, each
number 1, . . . , K can be viewed as an independent condition, each predicting on average
Gk = n · pk observations where players pick k.6
In the data, we observe exactly N observations, and hence, set n = N (fixed) for

the Poisson model. Let xki be observation i for number k where k = 1, 2, . . . , K and
i = 1, 2, . . . , N . Then, xki = 1 if player i chooses k and 0 otherwise. The mean of the
other N − 1 observations (except i) for each of the K conditions jointly form the vector
X̄ ′oi = (X̄o1i, · · · , X̄oki, · · · , X̄oKi), in which

X̄oki =
∑
j 6=i

xkj =
N · X̄k − xki

N − 1

where X̄k =
∑N

j=1 xkj is the mean of all N subjects in condition k.

6This result depends crucially on the Poisson assumption. Also, since ENO is a property of the model
for a specific dataset, one cannot directly compare different ENOs calculated using different datasets. In
particular, when the variation in the data is large, so is ENO since a few noisy observations is insuffi cient
to outweigh the model.

7



Let X̄o = (X̄o1, · · · , X̄oi, · · · , X̄oN) be the matrix of “mean of otherN−1 observations,”
and G′ = (G1, · · · , Gk, · · · , GK) be vector of model predictions. Then, the mean squared
errors (MSE) for the data and the model are

MSE(X̄o) =
1

K

K∑
k=1

1

N

N∑
i=1

(
xki − X̄oki

)2

MSE(G) =
1

K

K∑
k=1

1

N

N∑
i=1

(xki −Gk)2

Consider the pooled error variance (across all conditions):

S2 =
1

K

K∑
k=1

1

N − 1

N∑
i=1

(
xki − X̄k

)2

Note that (by the definition of X̄oki)

MSE(X̄o) =
1

K

K∑
k=1

1

N

N∑
i=1

(
xki −

N · X̄k − xki
N − 1

)2

=
1

K

K∑
k=1

1

N

N∑
i=1

(
N · xki −N · X̄k

N − 1

)2

=
N

N − 1
S2

Let N̂ be the corresponding N such that MSE(X̄o) = MSE(G), indicating that the
data and the model are equally good in prediction. This requires

MSE(G) = MSE(X̄o) =
N̂

N̂ − 1
S2 =

1

N̂ − 1
S2 + S2

Then, we define

ENO = N̂ − 1 =
S2

MSE(G)− S2

To see how ENO can be interpreted, consider the following “restricted regression with
recycling” that predicts each observation xki with two forecasts, the model prediction
Gki(= Gk independent of i) and the mean of the other N − 1 observations X̄oki, with the
restriction β1 + β2 = 1:

xki = β1(Gki) + β2(X̄oki) + εki

Clive W. J. Granger and Ramu Ramanathan (1984) show that the optimal weight β̂1 that
minimizes sum of squared residuals

∑K
k=1

∑N
i=1 ε̂

2
ki is the same as that of the ordinary

least square regression
xki − X̄oki = β1

(
Gki − X̄oki

)
+ ε̃ki
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Therefore, the optimal weighted average predictor for the hold-out observation xki has

β̂1 =

∑K
k=1

∑N
i=1

(
xki − X̄oki

)
·
(
Gki − X̄oki

)∑K
k=1

∑N
i=1

(
Gki − X̄oki

)2

=

1
KN

∑K
k=1

∑N
i=1

[ (
xki − X̄oki

)2
+
(
xki − X̄oki

)
·
(
Gki − xki

)]
1
KN

∑K
k=1

∑N
i=1

[(
Gki − xki

)2
+
(
xki − X̄oki

)2
+ 2
(
Gki − xki

)
·
(
xki − X̄oki

) ]
=

MSE(X̄o)− CD
(
X̄o, G

)
MSE(X̄o) +MSE(G)− 2CD

(
X̄o, G

)
where the “common deviation”is

CD(X̄o, G) =
1

K

K∑
k=1

1

N

N∑
i=1

(
xki − X̄oki

)
(xki −Gki)

Since X̄k − X̄oki = X̄k − N ·X̄k−xki
N−1

= 1
N−1

(
xki − X̄k

)
and

∑N
i=1

(
xki − X̄k

)
= 0,

CD(X̄o, G) =
1

K

K∑
k=1

1

N

N∑
i=1

[ (
xki − X̄k

)2
+
(
X̄k − X̄oki

)
·
(
xki − X̄k

)
+
(
xki − X̄k

)
·
(
X̄k −Gki

)
+
(
X̄k − X̄oki

)
·
(
X̄k −Gki

) ]
=

1

K

K∑
k=1

1

N

N∑
i=1

N

N − 1

(
xki − X̄k

)2
+

1

K

K∑
k=1

1

N

N∑
i=1

(
X̄k − X̄oki

)
·
(
X̄k −Gki

)
= S2 +

1

K

K∑
k=1

1

N

N∑
i=1

(
X̄oki − X̄k

)
·
(
Gki − X̄k

)
Ido Erev, Alvin Roth, Robert Slonim and Greg Barron (2007) show that under the as-
sumption that CD(X̄o, G) = S2, or when the errors of the two predictors are not corre-
lated, we have (since MSE(X̄o) = N

N−1
S2)

β̂1 =
N
N−1

S2 − S2

N
N−1

S2 +MSE(G)− 2S2
=

S2

N−1

S2

N−1
+ (MSE(G)− S2)

=
ENO

ENO + (N − 1)

Hence, ENO is the weight given to the model prediction Gki.7

Estimating the Poisson-Nash Equilibrium Week-by-Week

Using week-by-week data, we estimate the best-fitting n for the Poisson-Nash equilibrium
by minimizing mean squared error:

MSE(G) =
1

K

K∑
k=1

1

N

N∑
i=1

(xki −Gk)2

7In private communication, Ido Erev gave the following illustration: Suppose you have a model of
NBA star Shaquille O’Neal’s free-throw shooting predicting an average of 50 percent. You see him make
8 out of 10 free-throws today. What is your updated belief that he will make the next one? Here, you
have m=10 observations that predict 80 percent and a model that predicts 50 percent. Regardless of
your prediction, the weight you put on the model is your ENO.
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Note that we cannot employ the method of maximizing likelihood, as used to estimate
the cognitive hierarchy model, because large number guesses occur in the data, while the
last property of Proposition 1 states the predicted probabilities for large numbers should
be practically zero.
The estimation process starts with nl = 1 and nh = 100, 000, and consists of iterative

grid searches (with a grid size of 30 for each iteration). We then picked the best-fitting
integer values around these estimates. The top panel of Table A3 displays the results. In
particular, the estimated n is 22319 for week 1, 28593 for week 2, and gradually increases
to 33862 for week 5, before jumping up to 40331 and 41549 for week 6 and 7, respectively.
Since T (the maximum number guessed with positive probability) is positively correlated
with n, this reflects the week-by-week transition “filling up the gap between 3,000 and
5,500”illustrated in Figure A4.

Week 1 2 3 4 5 6 7
Estimated Poisson-Nash equilibrium

Estimated n 22319 28593 31947 33184 33862 40331 41549
Actual n 57017 54955 52552 50471 57997 55583 47907

χ2(for average frequency) 180.66 50.50 28.66 37.89 25.13 7.81 12.47
(Degree of freedom) ***(4) ***(6) ***(6) ***(7) ***(7) (8) (8)
Proportion below (%) 54.36 68.57 74.08 77.58 79.23 80.49 80.49

ENO 2512.9 6805.7 8793.1 11570.1 15861.4 19913.8 19421.2
Poisson-Nash equilibrium (n = 53, 783)
χ2(for average frequency) 372.64 160.01 109.63 131.09 113.98 43.70 41.85
(Degree of freedom) ***(4) ***(6) ***(6) ***(7) ***(7) ***(8) ***(8)
Proportion below (%) 48.95 61.29 67.14 67.44 69.93 76.25 76.23

ENO 2176.4 4964.4 6178.4 7032.4 8995.0 14056.8 13879.3
Cognitive hierarchy model

Log-likelihood -53740 -31881 -22085 -19672 -19496 -19266 -17594
τ 1.80 3.17 4.17 4.64 5.02 6.76 6.12
λ 0.0034 0.0042 0.0058 0.0068 0.0069 0.0070 0.0064

χ2(for average frequency) 41.83 35.23 5.44 3.88 4.49 4.59 5.48
(Degree of freedom) ***(4) ***(6) (6) (7) (7) (8) (8)
Proportion below (%) 62.58 72.57 78.65 80.17 82.09 82.43 82.24

ENO 3188.8 7502.5 9956.0 12916.1 17873.0 21469.6 21303.0

*=10 percent, **=5 percent and ***=1 percent significance level.
The degree of freedom for a χ2 test is the number of bins minus one.
The proportion below the theoretical prediction refers to the fraction of the empirical density that
lies below the theoretical prediction, or one minus the fraction of overshooting.

Table A3: Goodness-of-fit for the estimated Poisson-Nash equilibrium and cognitive hi-
erarchy for field data

Nevertheless, these estimated n are far less than the actual number of guesses. As
shown in Table A3, the average number of guesses per day is 57, 017 for week 1 and
fluctuates quite a bit but eventually drops to 47, 907 for week 7. Table 1 reports the
average number of guesses for all 49 days as 53, 783 and the minimum number of actual
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guesses is 38, 933. (See Figure A2 for the entire distribution.) Hence, the maximum
estimated n (week 6 and 7) are only comparable to the minimum of the actual number
of guesses, bounding the distribution of estimated n away from the majority of n that
actually occurred.
Though it is not clear how these incorrect beliefs sustained throughout the 49 days,

we can still compare the goodness-of-fit results of the estimated Poisson-Nash equilibrium
with to the cognitive hierarchy model. Table A3 provides this comparison, reporting
three goodness-of-fit measurements for the estimated Poisson-Nash equilibrium in the top
panel, and replicate the parameter-free Poisson-Nash equilibrium and cognitive hierarchy
results of Table 3 in the middle and bottom panel. To ensure predicted observations to
be at least 5 for the estimated Poisson-Nash equilibrium, we set the χ2 test bin numbers
to 5, 7, 7, 8, 8, 9, and 9, for week 1 to 7. This is done for all three models to obtain
comparable test results (and differs from Table 3).
As shown in the top panel of Table A3, the χ2 test rejects the estimated Poisson-Nash

equilibrium for week 1-5 at the 1% level, even when we bin 500 numbers into one category
and consider the rounded average of each bin. However, the estimated equilibrium per-
forms better than the original Poisson-Nash equilibrium (which is parameter free), and
cannot be rejected for week 6 and 7. But according to the χ2 test statistics, the cognitive
hierarchy model fits better in all weeks.
The proportion below theoretical prediction and ENO also yield similar results: Though

better than the original parameter-free Poisson-Nash equilibrium, the weekly estimated
Poisson-Nash equilibrium fits worse than the cognitive hierarchy in the first week (54.4%
vs. 62.6%; ENO: 2513 vs. 3189), but improves substantially and and is very similar to the
cognitive hierarchy model in the last week 6 (80.5% vs. 82.2%; ENO: 19914 vs. 21303).

C. Additional Details About the Field LUPI Game

This part of the Appendix provides some additional details about the field game that was
not discussed in the main text.8

The prize guarantee for the winner of 100,000 SEK was first extended until the 11th
of March and then to the 18th of March, so the prize guarantee covered all days for which
we have data. The thresholds for the second and third prizes were determined so that the
second prizes constituted 11 percent of all bets and the third prizes 17.5 percent. The
winner of the first prize also won the possibility to participate in a “final game”.9 The
final game ran weekly and had four to seven participants. The “final game”consisted of
three rounds where the participants chose two numbers in each round. The rules of this
game were very similar to the original game, but what happened in this game did not
depend on what number you chose in the main game, so we leave out the details about
this game.
The Hux Flux randomization option involved a uniform distribution where the support

of the distribution was determined by the play during the 7 previous days.10 It became

8Stefan Molin at Svenska Spel told us that he invented the game in 2001 after taking a game theory
course from the Swedish theorist and experimenter Martin Dufwenberg.

93.5 percent of all daily bets were reserved for this “final game”.
10In the first week HuxFlux randomized numbers uniformly between 1 and 15000. After seven days of

play, the computer randomized uniformly between 1 and the average 90th percentile from the previous
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possible to play the game on the Internet sometime between the 21st and 26th of February
2007. The web interface for online play is shown in Figure A12. This interface also
included the option HuxFlux, but in this case players could see the number that was
generated by the computer before deciding whether to place the bet.
We use daily data from the first seven weeks. The reason is that the game was

withdrawn from the market on the 24th of March 2007 and we were only able to access
data up to the 18th of March 2007.
The game was heavily advertised around the days when it was launched. The main

message was that this was a new game in which you should strive to be the only person
choosing the lowest unique number. The winning numbers (for the first, second, and third
prizes) were reported on TV, text-TV and the Internet every day. In the TV programs
they reported not only the winning numbers, but also commented briefly about how people
had played previously.
The richest information about the history of play was given on the home page of

Svenska Spel. People could display and download the frequencies of all numbers played
for all previous days. However, this data was presented in a raw format and therefore not
very accessible. The homepage also displayed a histogram of yesterday’s guesses which
made the data easier to digest. An example of how this histogram looked is shown in
Figure A13. The homepage also showed the total number of bets that had been made so
far during the day.
The web interface for online play also contained some easily accessible information.

Besides links to the data discussed above as well as information about the rules of the
game, there were some pieces of statistics that could easily be displayed from the main
screen. The default information shown was the first name and home town of yesterday’s
first prize winner and the number that that person guessed. By clicking on the pull-down
menu in the middle, you could also see the seven most popular guesses from yesterday.
This information was shown in the way shown in Figure A14. By moving the mouse over
the bars you can see how many people guessed that number. In this example, the most
popular number was 1234 with 85 guesses! Note that this information was not easily
available before online play was possible. From the same pull-down menu, you could also
see the total number of distinct numbers people guessed on during the last seven days.
Finally, you could display the numbers of the second- and third prize winners of yesterday.
In addition to this information, Svenska Spel also published posters with summary

statistics for previous rounds of the game (see Figure A15). The information given on
these posters varied slightly, but the one in Figure A15 shows the winning numbers, the
number of bets, the size of the first prize and if there was any numbers below the winning
number that no other player chose. It also shows the average, lowest and highest winning
number, as well as the most frequently played numbers.

D. Additional Details About the Lab Experiment

Screenshots from the input and results screens of the laboratory experiment are shown in
Figure A16 and A17. Figure A18 shows screenshots from the post-experimental question-
naire and Figure A19 a screenshot from the CRT.

seven days. However, the only information given to players about HuxFlux was that a computer would
choose a number for them.
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Figure A20 displays the aggregate data from non-selected and selected subjects’choices.
Subjects are slightly more likely to play high numbers above 20 when they are not selected
to participate, but overall the pattern looks very similar. This implies that subjects’be-
havior in a particular round is almost unaffected depending on whether they had marginal
monetary incentives or not.

Experimental Instructions

Instructions for the laboratory experiment are as follows (translated directly by one of the
authors from the Swedish field instructions, but modified in order to fit the laboratory
game):
Instruction for Limbo11

Limbo is a game in which you choose to play a number, between 1 and 99, that you
think nobody else will play in that round. The lowest number that has been played only
once wins.
The total number of rounds will not be announced. At the beginning of each

round, the computer will indicate whether you have been selected to participate in that
round. The computer selects participating players randomly so that the average number
of participating players in each round is 26.9. Please choose a number even if you are not
selected to participate in that round.
[Instructions where the Poisson distribution is explicitly described:
The game is played in 49 rounds. In the beginning of each round, the computer

will indicate whether you have been selected to participate in this round. The computer
selects participating players randomly so that the average number of participating players
in each round is 26.9.
Specifically, the number of players in each round is pre-drawn from a so called Poisson

distribution. The diagram below shows the Poisson distribution with mean 26.9. The
horizontal axis shows different possible numbers of participants, and the vertical axis
shows the probability of having that many participants. Notice that in some rounds there
are more than 27 players and in other rounds there are fewer than 27 players. You will not
know how many players are participating in each round. All you know is the probabilities
of what the number of players might be, given by the distribution shown in the diagram.
On the second screen you can indicate which number between 1 and 99 that you

want to play in that round.
Note: We also attached Figure A5 at the end of the instructions.]
After all participating players have selected a number, the round is closed and all bets

are checked. The lowest unique number that has been received is identified and the person
that picked that number is awarded a prize of 7$.
The winning number is reported on the screen and shown to everybody after each

round.
Prizes are paid out to you at the end of the experiment.
If you have any questions, raise your hand to get the experimenter’s attention.

Please be quiet during the experiment and do not talk to anybody except the experi-
menter.
11In order to mirror the field game as closely as possible, we referred to the LUPI game as “Limbo”in

the lab.
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Individual Lab Results

The regression results in Table 6 mask a considerably degree of heterogeneity between
individual subjects. Based on the responses in the post-experimental questionnaire, we
coded four variables depending on whether they mentioned each aspect as a motivation
for their strategy.

Random All subjects who claimed that they played numbers randomly were coded in
this category.12

Stick All subjects who stated that they stuck to one number throughout parts of the
experiment were included in this category. Many of these subjects explained their
choices by arguing that if they stuck with the same number, they would increase
the probability of winning.

Lucky This category includes all subjects who claimed that they played a favorite or
lucky number.

Strategic This category includes all players who explicitly motivated their strategy by
referring to what the other players would do.13

Several subjects were coded into more than one category.14

How well does the classification based on the self-reported strategies explain behavior?
Table A4 reports regressions where the dependent variables are four summary statistics
of subjects’behavior– the number of distinct choices, the mean number, the standard
deviation of number, and the total payoff. In the first column for each measure of indi-
vidual play only the four categories above are included as dummy variables. There are
few statistically significant relationships. Subjects coded into the “Stick” category did
tend to choose fewer and less dispersed numbers, and subjects coded as “Lucky”tend to
pick higher and more dispersed numbers. Table A4 also report regressions for the same
dependent variables and some demographic variables. The only statistically significant
relationship is that subjects familiar with game theory tend to pick less dispersed num-
bers (though their payoffs are not higher). Note that the explanatory power is very low
and that there are no significant coeffi cients in the regressions on the total payoff from
the experiment. This suggests that it is hard to affect the payoff by using a particular
strategy, which is consistent with the fully mixed equilibrium (where payoffs are the same
for all strategies).

12For example, one subject motivated this strategy choice in a particular sophisticated way: “First I
tried logic, one number up or down, how likely was it that someone else would pick that, etc. That wasn’t
doing any good, as someone else was probably doing the exact same thing. So I started mentally singing
scales, and whatever number I was on in my head I typed in. This made it rather random. A couple of
times I just threw curveballs from nowhere for the hell of it. I didn’t pay any attention to whether or
not I was selected to play that round after the first 3 or so.”
13For example, one subject stated the following: “I tried to pick numbers that I thought other people

wouldn’t think of– whatever my first intuition was, I went against. Then I went against my second
intuition, then picked my number. After awhile, I just used the same # for the entire thing.”
14For example, the following subject was classified into all but the “Lucky”category: “At first I picked

4 for almost all rounds (stick) because it isn’t considered to be a popular number like 3 and 5 (strategic).
Afterwards, I realized that it wasn’t helping so I picked random numbers (random).”
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# Distinct Mean Std. dev. Payoff
Random 0.77 -0.37 -0.54 -0.26

(1.44) (-0.42) (-0.61) (-0.21)
Stick −1.48∗∗∗ -1.12 −1.50∗ -0.36

(-2.80) (-1.30) (-1.70) (-0.29)
Lucky 1.24 4.43∗∗∗ 3.73∗∗∗ -0.39

(1.60) (3.52) (2.88) (-0.22)
Strategic 0.35 -0.65 -0.54 1.42

(0.68) (-0.78) (-0.63) (1.21)
Age -0.02 -0.00 0.02 0.26

(-0.18) (-0.02) (0.11) (1.32)
Female -0.23 -0.92 -1.03 -1.10

(-0.46) (-1.12) (-1.23) (-0.99)
Income (1-4) -0.13 -0.35 -0.50 0.38

(-0.48) (-0.81) (-1.17) (0.67)
Lottery player 0.17 0.59 0.39 -0.13

(0.34) (0.70) (0.47) (-0.12)
Game theory 0.25 0.23 −1.48∗ -0.55

(0.63) (-0.28) (-1.74) (-0.49)
R2 0.08 0.01 0.10 0.02 0.08 0.04 0.01 0.02
Obs. 152 152 152 152 152 152 152 152

Only selected choices are included in the calculation of the dependent variables. t−statistics within
parentheses. Constant included in all regressions. *=10 percent, **=5 percent and ***=1 percent
significance level.

Table A4: Linear regressions explaining individual behavior
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The questionnaire in two of the sessions also contained the three-question Cognitive
Reflection Test (CRT) developed by Shane Frederick (2005).15 The purpose with collecting
subjects’responses to the CRT is to get some measure of cognitive ability. In line with the
results reported in Frederick (2005), a majority of the UCLA subjects answered only zero
or one questions correctly. Interestingly, there does not appear to any relation between
player’s behavior or payoff in the LUPI game and the number of correctly answered
questions, but the sample size is small (n = 76). The number of correctly answered CRT
questions is not significant when the four measures in Table A4 are regressed on the CRT
score.
Figure A21 shows a histogram of the number of distinct numbers that subjects played

during the experiments. Based only on choices when players were selected to participate,
subjects played on average 9.65 different numbers, compared to 10.9 expected in Poisson-
Nash equilibrium. Figure A21 also shows a simulated distribution of how many distinct
numbers players would pick if they played according to the equilibrium distribution.
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Figure A11. The paper entry form for the Swedish LUPI (Limbo) game. 
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Figure A12. Online entry interface for the Swedish LUPI (Limbo) game. 
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Figure A13. Histogram of yesterday’s bets as shown online. 
 
 
 
 

 
Figure A14. Most popular numbers yesterday as shown online. 
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Figure A15. Example of Limbo poster. 
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Figure A16. Screenshot of input screen in the laboratory experiment.  
 

 
Figure A17. Screenshot of result screen in the laboratory experiment. 
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Figure A18. Screenshots of questionnaire in the laboratory experiment. 
 

 
Figure A19. Screenshot of CRT in the laboratory experiment. 
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Figure A20. Laboratory total frequencies, selected (left) vs non-selected (right) subjects. 
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Figure A21. Histogram of the number of distinct numbers chosen by subjects (selected 
subjects’ choices from all sessions, one subject choosing 27 distinct numbers excluded) 
and the corresponding simulated number of distinct numbers if subjects were playing 
the Poisson-Nash equilibrium. 


