Welfare-based optimal monetary policy with unemployment and sticky prices: A linear-quadratic framework: Appendix

Federico Ravenna and Carl E. Walsh∗

June 2010

1 The efficient equilibrium

Using the assumed functional form of the matching function, the social planner’s problem can be written as

\[
\max_{C, N, u, \theta} E_t \sum_{i=0}^{\infty} \beta^i \left\{ \left(\frac{C_{i+1}^{1-\sigma}}{1-\sigma} \right) + \lambda_{t+i} [Z_{t+i}N_{t+i} - \kappa u_{t+i}\theta_{t+i} + w^u(1-N_t) - C_{t+i}] \\
+ \psi_{t+i} [(1-\rho)N_{t+i-1} + \varphi t^{\alpha_i}u_{t+i} - N_{t+i}] + s_{t+i} [u_{t+i} - 1 + (1-\rho)N_{t+i-1}] \right\} .
\]

First order conditions are

\[C: C^{1-\sigma}_t - \lambda_t = 0; \]
\[\theta: \ - \lambda_t \kappa u_{t+i} + \psi_t \alpha \varphi t^{\alpha_i} u_t = 0; \]
\[u: \ - \lambda_t \kappa \theta_t + \psi_t \varphi t^{\alpha_i} + s_t = 0; \]
\[N: \lambda_t (Z_t - w^u) - \psi_t + (1-\rho)\beta E_t (\psi_{t+1} + s_{t+1}) = 0. \]

The second of these first order conditions implies

\[\frac{\psi_t}{\lambda_t} = \left(\frac{\kappa}{\alpha \varphi} \right)^{1-\alpha}_t, \]

while the third then implies

\[\frac{s_t}{\lambda_t} = \kappa \theta_t - \frac{\psi_t}{\lambda_t} \varphi t^{\alpha_i} = \left(\frac{\alpha - 1}{\alpha} \right) \kappa \theta_t. \]

∗Department of Economics, University of California, Santa Cruz, CA 95064; fravenna@ucsc.edu, walshc@ucsc.edu.

We thank the editors, seminar participants at UC Irvine, LSU, and Richard Dennis, Bart Hobijn and Michael Woodford for helpful comments and the Banque de France Foundation for financial support.
We can write the fourth of these first order conditions as
\[Z_t = w^u + \frac{\psi_t}{\lambda_t} - (1 - \rho) \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left(\frac{\psi_{t+1} + s_{t+1}}{\lambda_{t+1}} \right) . \]

Rearranging this condition for efficiency and noting that \(\varphi \theta_t^{\alpha-1} = q(\theta_t) \) yields
\[
Z_t = w^u + \left(\frac{\kappa}{\alpha \varphi} \theta_t^{1-\alpha} \right) - (1 - \rho) \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left[\frac{\kappa}{\alpha \varphi} \theta_t^{1-\alpha} + \left(\frac{\alpha - 1}{\alpha} \right) \kappa \theta_{t+1} \right].
\]

In the steady-state, this condition becomes
\[
1 = w^u + \left(\frac{\kappa}{\alpha \varphi} \right) - (1 - \rho) \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \frac{\kappa}{\alpha \varphi} \theta_{t+1}.
\]

Equations (11) and (12) imply that the job posting condition takes the form
\[
\frac{Z_t}{\mu_t} = w^u + \left(\frac{1}{1 - b_t} \right) \left\{ \frac{\kappa}{q_t} - \beta (1 - \rho) E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1 - b_t p_{t+1}) \right\} .
\]

When prices are flexible, \(\mu_t = \mu > 1 \) for all \(t \). However, a tax-subsidy policy that offsets the allocative effects of the steady-state markup is not sufficient to ensure that the resulting flex-price equilibrium is efficient as is the case in the standard new Keynesian model. Inefficient job posting can lead to an inefficient level of vacancies and unemployment. Efficiency requires \(\mu_t = \mu = 1 \) and \(b_t = 1 - \alpha \). This second condition is the familiar the Hosios condition for efficient vacancy creation.\(^1\)

Letting a superscript \(e \) denote the efficient equilibrium, the job posting condition takes the form
\[
Z_t = w^u + \left(\frac{1}{\alpha} \right) \left\{ \frac{\kappa}{\varphi} (\theta_t^e)^{1-\alpha} - \beta (1 - \rho) E_t \left(\frac{\lambda_{t+1}^e}{\lambda_t^e} \right) \frac{(\theta_t^e)^{1-\alpha}}{\varphi} - (1 - \alpha) \theta_{t+1}^e \right\} .
\]

\(^{1}\)The Hosios condition requires that labor’s share of the surplus, \(b \), equal the elasticity of matches with respect to unemployment, \(1 - \alpha \).
When linearized, and expressed in terms of the efficient level of unemployment, this yields

\[
a_1 \left(\hat{u}_{t+1}^e - \rho_a \hat{u}_t^e \right) - \beta a_2 \left(E_t \hat{u}_{t+2}^e - \rho_a \hat{u}_{t+1}^e \right) - \beta a_3 \alpha \rho \hat{r}_t^e = -\alpha \rho \hat{\mu}_t, \tag{3}
\]

where \(\hat{r}_t^e \) is the equilibrium real interest rate in the efficient equilibrium.

In addition, the IS relationship in the efficient equilibrium takes the form

\[
\hat{u}_{t+1}^e = \left(\frac{\beta}{1 + \beta} \right) E_t \hat{u}_{t+2}^e + \left(\frac{1}{1 + \beta} \right) \hat{u}_t^e \nonumber \\
- \left(\frac{1}{\sigma} \right) \left(\frac{1}{1 + \beta} \right) \left(\frac{\eta \bar{C}}{\delta_2 \bar{Y}} \right) \hat{r}_t^e - \left(\frac{1}{1 + \beta} \right) \left(\frac{\bar{Y}}{\bar{C}} \right) \left(1 - \rho_x \right) \hat{\mu}_t, \tag{4}
\]

where \(\delta_2 = (1 - \rho) \left(\kappa \bar{V} / \alpha \bar{U} \right) \left(\alpha - 1 + \bar{U} / \rho \bar{N} \right) \). The responses of the efficient unemployment rate \(\hat{u}_{t+1}^e \) and the real interest rate in the face of productivity shocks can be found by jointly solving (3) and (4). Equations (3) and (4) imply that the equilibrium unemployment responds to productivity shocks even under flexible prices.

2 The Nash bargaining solution

The value of a match to a firm is \(J_t \). For a worker, the valuation equation for being in a match that produces in period \(t \) is

\[
V^E_t = w_t + \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left\{ (1 - \rho) V^E_{t+1} + \rho \left[p_{t+1} V^E_{t+1} + (1 - p_{t+1}) V^U_{t+1} \right] \right\},
\]

or

\[
V^E_t = w_t + \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left[V^E_{t+1} - \rho (1 - p_{t+1}) \left(V^E_{t+1} - V^U_{t+1} \right) \right]
\]

since a matched worker survives the exogenous separation hazard with probability \(1 - \rho \), is exogenously separated but finds another match with probability \(p_{t+1} \), and fails to find a match with probability \(1 - p_{t+1} \). The valuation equation for being unmatched is

\[
V^U_t = w^u + \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left[p_{t+1} (1 - \rho) V^E_{t+1} + p_{t+1} \rho V^U_{t+1} + (1 - p_{t+1}) V^U_{t+1} \right],
\]

or

\[
V^U_t = w^u + \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left[V^U_{t+1} + p_{t+1} \left(V^E_{t+1} - V^U_{t+1} \right) \right].
\]

\(^2\) In (4), we have followed Neiss and Nelson (2003) in defining \(\hat{u}_{t+1}^e \) relative to last-period’s efficient unemployment rate. Thus, the path of \(\hat{u}_{t+1}^e \) is that for an economy that has always been in an efficient equilibrium. Alternatively, Woodford (2003) defines the flexible-price and efficient equilibria conditional on the actual outcomes in the previous period. In that case, \(\hat{u}_{t+1}^e \) would depend on \(\hat{u}_t \). Edge (2003) discusses these two alternative definitions in the context of a model in which the lagged capital stock is an endogenous state variable. We follow the Neiss-Nelson definition; as Edge shows, it proves more convenient for deriving the welfare approximation we use to characterize optimal monetary policy.
An unmatched worker finds a job and survives the exogenous separation hazard with probability $p_t(1-\rho)$, finds a job but does not survive the exogenous hazard with probability $q_t\rho$, and fails to find a job with probability $1-p_t$. Thus, the value of a match to worker is

$$V^S_t = V^E_t - V^U_t = w_t - w^u + \beta(1-\rho)E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1-p_{t+1}) V^S_{t+1}. \quad (5)$$

The value of a match to a worker is equal to the wage w_t net of w^u plus the expected discounted value of being in a match in the following period. The probability of being in a match is $1-\rho$, the probability of surviving the exogenous separation hazard, plus the probability of exogenously separating but finding another match within the period, or ρ.

Let b_t denote the worker’s share of the job surplus in period t, where b_t is assumed to follow a stationary stochastic process. Under Nash bargaining, the sharing rule implies

$$b_t J_t = b_t \left(\frac{\kappa}{q_t} \right) = (1-b_t) (V^E_t - V^U_t). \quad (6)$$

so

$$V^S_{t+1} = \left(\frac{b_{t+1}}{1-b_{t+1}} \right) J_{t+1} = \left(\frac{b_{t+1}}{1-b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right).$$

We can use this in (5) to write the worker’s surplus as

$$V^S_t = V^E_t - V^U_t = w_t - w^u + \beta(1-\rho)E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1-p_{t+1}) V^S_{t+1}$$

$$= w_t - w^u + \beta(1-\rho)E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1-p_{t+1}) \left(\frac{b_{t+1}}{1-b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right).$$

So (6) becomes

$$b_t \left(\frac{\kappa}{q_t} \right) = (1-b_t) V^S_t = (1-b_t) \left[w_t - w^u + \beta(1-\rho)E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1-p_{t+1}) \left(\frac{b_{t+1}}{1-b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right) \right]$$

Solving for the wage,

$$\left[w_t - w^u + \beta(1-\rho)E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) (1-p_{t+1}) \left(\frac{b_{t+1}}{1-b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right) \right] = \left(\frac{b_t}{1-b_t} \right) \left(\frac{\kappa}{q_t} \right)$$

$$w_t = w^u + \left(\frac{b_t}{1-b_t} \right) \left(\frac{\kappa}{q_t} \right) - (1-\rho) \left(\frac{1}{R_t} \right) E_t (1-p_{t+1}) \left(\frac{b_{t+1}}{1-b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right)$$

or, defining

$$\varphi_t = \left(\frac{b_t}{1-b_t} \right) \left(\frac{\kappa}{q_t} \right),$$

$$w_t = w^u + \varphi_t - (1-\rho) \left(\frac{1}{R_t} \right) E_t (1-p_{t+1}) \varphi_{t+1} \quad (7)$$
Doing it correctly, equation (13) of the most recent draft is

\[
\frac{Z_t}{\mu_t} = w_t + \frac{\kappa}{q_t} - (1 - \rho) \frac{1}{R_t} E_t \left(\frac{\kappa}{q_{t+1}} \right)
\]

which, using the wage equation (7) yields

\[
\frac{Z_t}{\mu_t} = w^u + \varphi_t - (1 - \rho) \frac{1}{R_t} E_t (1 - p_{t+1}) \varphi_{t+1} \\
+ \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \frac{1}{R_t} E_t \left(\frac{\kappa}{q_{t+1}} \right)
\]

or

\[
\frac{Z_t}{\mu_t} = w^u + \left(\frac{b_t}{1 - b_t} \right) \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \frac{1}{R_t} E_t (1 - p_{t+1}) \left(\frac{b_{t+1}}{1 - b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right) \\
+ \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \frac{1}{R_t} E_t \left(\frac{\kappa}{q_{t+1}} \right)
\]

Combining terms,

\[
\frac{Z_t}{\mu_t} = w^u + \left(\frac{1}{1 - b_t} \right) \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \frac{1}{R_t} E_t \left(\frac{1 - b_{t+1}}{1 - b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right)
\]

So the definition of the \(\xi_t \), the effective cost of labor, is

\[
\xi_t \equiv w^u + \left(\frac{1}{1 - b_t} \right) \left\{ \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \frac{1}{R_t} E_t \left(\frac{1 - b_{t+1}}{1 - b_{t+1}} \right) (1 - b_{t+1} p_{t+1}) \left(\frac{\kappa}{q_{t+1}} \right) \right\}
\]

3 The linearized structural equations

The model consists of the following core equations (see paper for definitions of the variables and a discussion of the model equations):

\[
Y_t = C_t - w^u (1 - N_t) + \kappa V_t, \quad (8)
\]

\[
\lambda_t = \beta E_t R_t \lambda_{t+1}
\]

\[
u_t \equiv 1 - (1 - \rho) N_{t-1}.
\]

\[
N_t = (1 - \rho) N_{t-1} + \chi v^\alpha_t u^{1-\alpha}_t.
\]

\[
\frac{Z_t}{\mu_t} = w_t + \frac{\kappa}{q_t} - (1 - \rho) \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left(\frac{\kappa}{q_{t+1}} \right) \quad (9)
\]

\[
\lambda_t = \beta E_t R_t \lambda_{t+1}
\]

\[
u_t \equiv 1 - (1 - \rho) N_{t-1}.
\]

\[
N_t = (1 - \rho) N_{t-1} + \chi v^\alpha_t u^{1-\alpha}_t.
\]

\[
\frac{Z_t}{\mu_t} = w_t + \frac{\kappa}{q_t} - (1 - \rho) \beta E_t \left(\frac{\lambda_{t+1}}{\lambda_t} \right) \left(\frac{\kappa}{q_{t+1}} \right) \quad (9)
\]

\[
w_t = (1 - b_t) w^u + b_t \left[\frac{Z_t}{\mu_t} + (1 - \rho) \frac{1}{R_t} E_t \left(\frac{\kappa}{q_{t+1}} \right) p_{t+1} \right], \quad (10)
\]
\[\tau_t \equiv w^u + \left(\frac{1}{\text{ } 1 - b_t} \right) \left\{ \frac{\kappa}{q_t} - (1 - \rho) \left(\frac{1}{R_t} \right) E_t \left(1 - b_t p_t + 1 \right) \right\} \cdot \left(\frac{\kappa}{q_{t+1}} \right). \]

(11)

plus the Fisher equation linking the nominal and real interest rates, the first order condition for price adjusting firms, and the definitions of \(\lambda \) as the marginal utility of consumption, \(q_t \) as the probability a vacancy is filled, \(p_t \) as the probability an unemployment work finds a match, and \(b_t \) and \(z_t \) are exogenous bargaining and productivity shocks.

When linearized around the steady state of the model, one obtains

\[
\hat{y}_t = \left(\frac{C}{Y} \right) \hat{c}_t + w^u \hat{n}_t + \left(\frac{\kappa V}{Y} \right) \hat{v}_t. \tag{12}
\]

\[
\hat{c}_t = E_t \hat{c}_{t+1} - \left(\frac{1}{\sigma} \right) \left(\hat{i}_t - E_t \pi_{t+1} \right). \tag{13}
\]

\[
\hat{u}_t = - (1 - \rho) \left(\frac{\bar{N}}{\bar{u}} \right) \hat{n}_{t-1} - \eta \hat{n}_{t-1}. \tag{14}
\]

\[
\hat{n}_t = \rho \hat{n}_{t-1} + \alpha \rho \hat{\theta}_t, \tag{15}
\]

where

\[
\hat{\theta}_t = \hat{v}_t - \hat{u}_t. \tag{16}
\]

Since for marginal cost,

\[\hat{\mu}_t = z_t - \hat{\xi}_t, \]

we need an expression for \(\hat{\xi}_t \), the effective cost of labor. Start with

\[
\xi_t \equiv w^u + \left(\frac{1}{\text{ } 1 - b_t} \right) \left(\frac{\kappa}{q_t} \right) - (1 - \rho) \left(\frac{1}{R_t} \right) E_t \left(\frac{1 - b_t p_t + 1}{1 - b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right). \]

The terms on the right hand side are approximated as

\[
(1) \left(\frac{1}{\text{ } 1 - b_t} \right) \left(\frac{\kappa}{q_t} \right) \approx \left(\frac{1}{\text{ } 1 - b} \right) \left(\frac{\kappa}{q} \right) + \left(\frac{1}{\text{ } 1 - b} \right) \left(\frac{b}{1 - b} \right) \hat{b}_t - \left(\frac{1}{\text{ } 1 - b} \right) \left(\frac{\kappa}{q} \right) \hat{q}_t \]

\[
(2) - (1 - \rho) \left(\frac{1}{R_t} \right) E_t \left(\frac{1 - b_t p_t + 1}{1 - b_{t+1}} \right) \left(\frac{\kappa}{q_{t+1}} \right) = -\beta(1 - \rho) \left(\frac{1 - bp}{1 - b} \right) \left(\frac{\kappa}{q} \right) \hat{q}_{t+1} \]

\[+\beta(1 - \rho) \left(\frac{b}{1 - b} \right) \hat{b}_{t+1} \]

and

\[\left(\frac{1 - b_{t+1} p_{t+1}}{1 - b_{t+1}} \right) \approx \left(\frac{1 - bp}{1 - b} \right) \left(\frac{1 - p}{1 - b} \right) \hat{b}_{t+1} - \left(\frac{bp}{1 - b} \right) \hat{p}_{t+1} \]
So collecting these results after noting that $\xi = 1/\mu$:

\[
\hat{\xi}_t = \left(\frac{1}{1-b}\right) \left(\frac{\kappa}{q}\right) \left(\frac{b}{1-b}\right) \hat{b}_t - \left(\frac{1}{1-b}\right) \left(\frac{\kappa}{q}\right) \hat{q}_t - \beta(1-\rho) \left(\frac{1-bp}{1-b}\right) \left(\frac{\kappa}{q}\right) \hat{q}_{t+1} + \beta(1-\rho) \left(\frac{1-bp}{1-b}\right) \hat{r}_t \\
- \beta(1-\rho) \left(\frac{\kappa}{q}\right) E_t \left[\left(\frac{1-bp}{1-b}\right) \left(\frac{b}{1-b}\right) \hat{b}_{t+1} - \left(\frac{bp}{1-b}\right) \hat{p}_{t+1} \right]
\]

Recall that

\[
\hat{q}_t = (\alpha - 1) \hat{\theta}_t; \quad \hat{p}_t = \hat{\theta}_t + \hat{q}_t = \alpha \hat{\theta}_t
\]

So

\[
\hat{\xi}_t = -\mu \left(\frac{1}{1-b}\right) \left(\frac{\kappa}{q}\right) \hat{q}_t + \mu \left(\frac{1}{1-b}\right) \left(\frac{\kappa}{q}\right) \left(\frac{b}{1-b}\right) \left[1 - \beta(1-\rho)(1-p)\rho_b\right] \hat{b}_t \\
- \mu \beta(1-\rho) \left(\frac{\kappa}{q}\right) E_t \left[\left(\frac{1-bp}{1-b}\right) (\alpha - 1) - \left(\frac{bp}{1-b}\right) \alpha \right] \hat{\theta}_{t+1} \\
+ \mu \beta(1-\rho) \left(\frac{\kappa}{q}\right) \left(\frac{1-bp}{1-b}\right) \hat{r}_t
\]

Let

\[
A = \mu \left(\frac{1}{1-b}\right) \left(\frac{\kappa}{q}\right).
\]

Then

\[
\hat{\xi}_t = A(1-\alpha) \hat{\theta}_t - A\beta(1-\rho) E_t [1 - \alpha - bp] \hat{\theta}_{t+1} \\
+ A\beta(1-\rho) (1 - b\theta q) \hat{r}_t \\
+ A \left(\frac{b}{1-b}\right) \left[1 - \beta(1-\rho)(1-p)\rho_b\right] \hat{b}_t
\]

and

\[
\hat{\mu}_t = z_t - \hat{\xi}_t = z_t - A(1-\alpha) \hat{\theta}_t + A\beta(1-\rho) E_t (1 - \alpha - b\theta q) \hat{\theta}_{t+1} \\
- A\beta(1-\rho) (1 - b\theta q) \hat{r}_t - B\hat{b}_t,
\]

where

\[
B \equiv A \left(\frac{b}{1-b}\right) \left[1 - \beta(1-\rho)(1-p)\rho_b\right].
\]

Evaluated around the efficient steady state,

\[
A = \left(\frac{1}{\alpha}\right) \left(\frac{\kappa \bar{V}}{\rho\bar{N}}\right).
\]
From (9) – (11) and the model of price adjustment,

\[\hat{\mu}_t = z_t - \mu \left(a_1 \hat{\theta}_t - \beta a_2 E_t \hat{\theta}_{t+1} - \beta a_3 \hat{r}_t + B \hat{b}_t \right) \]

(17)

\[\pi_t = \beta E_t \pi_{t+1} - \delta \hat{\mu}_t. \]

(18)

The Fisher equation is

\[i_t = \hat{r}_t - E_t \pi_{t+1}. \]

(19)

These eight equations, when combined with the production function and a specification of monetary policy, can be solved for \(\hat{c}_t, \hat{y}_t, \hat{n}_t, \hat{u}_t, \hat{v}_t, \hat{\theta}_t, \hat{\mu}_t, \hat{r}_t, \pi_t, \) and \(i_t. \) We proceed to obtain a version of the model that consists of three structural equations in \(\pi_t, \hat{u}_t, \) and \(\hat{\theta}_t. \)

Define \(\eta \equiv (1 - \rho) \left(\bar{N}/\bar{u} \right) \) and \(\rho_u \equiv (1 - \rho) \left(1 - \rho \bar{N}/\bar{u} \right). \) We can use (14), (15) and (16) to write

\[\hat{\theta}_t = - \left(\frac{1}{\alpha \rho \eta} \right) (\hat{u}_{t+1} - \rho_u \hat{u}_t). \]

(20)

Since \(\hat{\nu}_t = \hat{\theta}_t + \hat{u}_t, \)

\[\hat{\nu}_t = - \left(\frac{1}{\alpha \rho \eta} \right) \hat{u}_{t+1} + \left[1 + \rho_u \left(\frac{1}{\alpha \rho \eta} \right) \right] \hat{u}_t. \]

(21)

The constant returns to scale technology for wholesale good’s production implies, when linearized, that \(\hat{\gamma}_t = \hat{n}_t + \hat{z}_t. \) Thus, \(\hat{\gamma}_t \) can be eliminated from (12) to yield

\[\hat{c}_t = \left(\frac{Y}{C} \right) (1 - w^u) \hat{n}_t + \left(\frac{Y}{C} \right) z_t - \left(\frac{\kappa V}{C} \right) \hat{\nu}_t. \]

(22)

We can now use (21) to write the goods market clearing condition (22) as

\[\hat{c}_t = - \left(\frac{Y}{C} \right) (1 - w^u) \left(\frac{1}{\eta} \right) \hat{u}_{t+1} + \left(\frac{Y}{C} \right) z_t + \left(\kappa V \right) \left(\frac{1}{\alpha \rho \eta} \right) \hat{u}_{t+1}
- \left(\frac{\kappa V}{C} \right) \left[1 + \rho_u \left(\frac{1}{\alpha \rho \eta} \right) \right] \hat{u}_t, \]

or

\[\hat{c}_t = \varphi_1 \hat{u}_{t+1} - \varphi_2 \hat{u}_t + \left(\frac{Y}{C} \right) z_t, \]

(23)

where, \(\varphi_1 \equiv -(\bar{Y}/\eta \bar{C}) \left[1 - w^u - (\kappa \bar{V}/\alpha \rho \bar{Y}) \right] = -(\bar{Y}/\eta \bar{C}) \delta_1 \) and \(\varphi_2 \equiv (\kappa \bar{Y}/\alpha \rho \eta \bar{C}) (\alpha \rho \eta + \rho_u) = (\bar{Y}/\eta \bar{C}) \delta_2. \)

Eliminating \(\hat{c}_t \) from (13) yields

\[\hat{u}_{t+1} = \gamma E_t \hat{u}_{t+2} + (1 - \gamma) \hat{u}_t - \left[\frac{1}{\sigma (\varphi_1 + \varphi_2)} \right] (i_t - E_t \pi_{t+1})
+ \left(\frac{1}{\varphi_1 + \varphi_2} \right) \left(\frac{Y}{C} \right) (E_t \hat{z}_{t+1} - \hat{z}_t). \]

(24)
where $\gamma = \varphi_1 / (\varphi_1 + \varphi_2)$. It is straightforward to show that when the efficiency condition (2) holds, $\gamma = \beta / (1 + \beta)$ so that (24) becomes

$$
\hat{u}_{t+1} = \left(\frac{\beta}{1+\beta} \right) E_t \hat{u}_{t+2} + \left(\frac{1}{1+\beta} \right) \hat{u}_t - \left(\frac{1}{1+\beta} \right) \left(\eta \bar{C} \delta_2 N / \delta N \right) \left(\frac{1}{\sigma} \right) (i_t - E_t \pi_{t+1})
+ \left(\frac{1}{1+\beta} \right) \left(\eta \delta_2 / \delta_2 \right) (E_t \hat{z}_{t+1} - \hat{z}_t)
$$

Equations (20), (25), and (26) gives three equilibrium conditions in terms of unemployment, labor market tightness, and inflation that could be combined with a specification of monetary policy.

A version of the model that is even more similar to a standard new Keynesian specification can be obtained by using (20) to eliminate $\hat{\theta}_t$ from (26) to yield two structural equations, an unemployment based IS relationship and an unemployment based Phillips curve. These two relationships are

$$
\hat{u}_{t+1} = \gamma E_t \hat{u}_{t+2} + (1 - \gamma) \hat{u}_t - \left[\frac{1}{\sigma (\varphi_1 + \varphi_2)} \right] \hat{r}_t - \left(\frac{1}{\varphi_1 + \varphi_2} \right) \left(\frac{\bar{Y}}{\bar{C}} \right) (1 - \rho_u) \hat{z}_t
$$

and

$$
\pi_t = \beta E_t \pi_{t+1} + \left(\frac{\delta \mu}{\alpha \rho \eta} \right) \left[a_2 \beta (E_t \hat{u}_{t+2} - \rho_u \hat{u}_{t+1}) - a_1 (\hat{u}_{t+1} - \rho_u \hat{u}_t) \right]
+ \beta \delta \mu \rho \eta \hat{r}_t + \delta B \hat{b}_t - \delta \hat{z}_t
$$

where

$$
\begin{align*}
\gamma & = \varphi_1 / (\varphi_1 + \varphi_2) \\
\rho_u & = (1 - \rho)(1 - \rho N / \bar{u}) \\
\eta & = (1 - \rho) (N / \bar{u}) \\
\varphi_1 & = \left(\bar{Y} / \bar{C} \right) \left[1 - w^u - (\kappa \bar{V} / \alpha \rho \bar{Y}) \right] \\
\varphi_2 & = (\kappa \bar{Y} / \alpha \rho \eta \bar{C}) (\alpha \rho \eta + \rho_u) \\
a_1 & = \left[(1 - \alpha) / (1 - b) \right] (\kappa \bar{V} / \rho \bar{N}) \\
a_2 & = a_1 \left[(1 - \rho) / (1 - \alpha) \right] (1 - \alpha - \rho N / \bar{u}) \\
a_3 & = a_1 \left[(1 - \rho) / (1 - \alpha) \right] (1 - \beta \rho \bar{N} / \bar{u}) \\
B & = \left[b / (1 - b) \right] \left[1 - \mu w^u + \mu \beta (1 - \rho) (\kappa \bar{V} / \bar{u}) \right].
\end{align*}
$$

A primary difference from a standard Phillips curve is that inflation is affected by current and
expected future values unemployment, as well as by the real rate of interest.\(^3\)

4 Natural levels (flexible prices)

From the marginal cost expression when prices are flexible,

\[
(1 - b_t) \frac{Z_t}{\mu} = (1 - b_t) w^u + \frac{\kappa}{\varphi} \theta_t^{1-\alpha} - (1 - \rho) \left(\frac{1}{R_t} \right) E_t \left(\frac{\kappa}{\varphi} \theta_t^{1-\alpha} - \kappa b_t \theta_{t+1} \right). \tag{29}
\]

Comparing this to (1) shows that the equilibrium will be efficient if \(b = 1 - \alpha\) (the Hosios condition), \(\hat{b}_t = 0\), and \(\mu = 1\). Linearizing (29) around the efficient steady-state, and letting a superscript \(e\) denote the efficient equilibrium, one obtains

\[
\hat{z}_t = (1 - \alpha) \frac{\kappa V}{\alpha \rho N} \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_{t+1}^e \right) + \beta \delta_2 \hat{r}_t^e. \tag{30}
\]

Since \(\delta_1 = -\beta \delta_2\), so we also can rewrite (30) as

\[
\hat{z}_t = (1 - \alpha) \left(\frac{\kappa V}{\alpha \rho N} \right) \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_{t+1}^e \right) - \delta_1 \hat{r}_t^e. \tag{31}
\]

The IS relationship (25) holds whether prices are sticky or flexible, so

\[
\hat{u}_{t+1}^e = \left(\frac{\beta}{1 + \beta} \right) E_t \hat{u}_{t+2}^e + \left(\frac{1}{1 + \beta} \right) \hat{u}_t^e - \left(\frac{1}{1 + \beta} \right) \left(\frac{\eta}{\delta_2} \right) \left(\frac{C}{N} \right) \left(\frac{1}{\sigma} \right) \hat{r}_t^e
\]

\[
+ \left(\frac{1}{1 + \beta} \right) \left(\frac{\eta}{\delta_2} \right) \left(E_t \hat{z}_{t+1}^e - \hat{z}_t^e \right).
\]

It will be convenient to rewrite this in terms of employment as

\[
\hat{z}_t = \delta_2 \left[(1 + \beta) \hat{u}_t^e - \beta E_t \hat{u}_{t+1}^e - \hat{u}_{t-1}^e \right] - \left(\frac{C}{Y} \right) \left(\frac{1}{\sigma} \right) \hat{r}_t^e + E_t \hat{z}_{t+1}^e. \tag{32}
\]

5 Welfare

To derive an approximation to the representative agent’s utility, it is necessary to first introduce some additional notation. For any variable \(X_t\), let \(\bar{X}\) be its steady-state value and let \(\hat{X}_t = \log \left(X_t / \bar{X} \right)\) be the log deviation of \(X_t\) around its steady-state value. Using a second order Taylor approximation,

\[
X_t - \bar{X} = \hat{X}_t \left(\frac{X_t}{\bar{X}} - 1 \right) \approx \hat{X}_t \left(\hat{X}_t + \frac{1}{2} \hat{X}_t^2 \right). \tag{33}
\]

\(^3\)To obtain a single equation representing the constraints on monetary policy (as long as interest rates do not appear in the central bank’s objective function), the IS relationship can be used to eliminate the real interest rate from the Phillips curve. In this case, inflation will depend on current and expected future changes in the unemployment rate as well as its level.
Employing this notation, we develop a second order approximation to the utility of the representative household. In doing so, we found the work of Edge (2003) very helpful.

5.1 Household utility

The second order approximation to household utility, which is a function of total consumption, is

\[
U(C_t) \approx U(\bar{C}) + U_c \bar{C}^m \left(\epsilon_t^m + \frac{1}{2} (\epsilon_t^m)^2 \right) - w^u U_c \bar{\bar{N}} \left(\hat{n}_t + \frac{1}{2} \hat{n}_t^2 \right) + \frac{1}{2} U_{cc} \bar{C}^m \left[\epsilon_t^m - \left(\frac{w^u \bar{\bar{N}}}{\bar{C}^m} \right) \hat{n}_t \right]^2. \tag{34}
\]

If we define

\[
\hat{\sigma} = - \frac{U_{cc} \bar{C}}{U_c} \left(\frac{\bar{C}^m}{\bar{C}} \right) = \sigma \left(\frac{\bar{C}^m}{\bar{C}} \right)
\]

Then (34) becomes

\[
U(C_t) \approx U(\bar{C}) + U_c \bar{C}^m \left(\epsilon_t^m + \frac{1}{2} (\epsilon_t^m)^2 \right) - U_c w^u \bar{\bar{N}} \left(\hat{n}_t + \frac{1}{2} \hat{n}_t^2 \right) - \frac{1}{2} \hat{\sigma} U_c \bar{C}^m \left[\epsilon_t^m - \left(\frac{w^u \bar{\bar{N}}}{\bar{C}^m} \right) \hat{n}_t \right]^2. \tag{35}
\]

5.1.1 Second order expansion for market consumption

Market clearing requires

\[
C_t^m D_t = Z_t \bar{N}_t - \kappa V_t,
\]

where

\[
D_t \equiv \int_0^1 \left(\frac{P_t(i)}{P_t} \right)^{-\varepsilon} di
\]

measures the dispersion of relative prices. So

\[
\frac{C_t^m D_t}{C^m} = \frac{Z_t \bar{N}_t - \kappa V_t}{C^m} \approx 1 + \bar{N} \left(\hat{z}_t + \hat{n}_t \right) + \frac{1}{2} \left(\hat{z}_t + \hat{n}_t \right)^2 - \frac{\kappa \bar{V}}{C^m} \left(\hat{v}_t + \frac{1}{2} \hat{v}_t^2 \right). \tag{36}
\]

5.1.2 Second order expansion for vacancies

Since \(V_t = \theta_t U_t \),

\[
\hat{v}_t = \hat{\theta}_t + \hat{\alpha}_t
\]
is exact, but to express this in terms of \(\tilde{n}_t \), we need to use the correct second order approximation for unemployment in terms of employment. Since \(U_t = 1 - (1 - \rho)N_{t-1} \),

\[
\hat{u}_t + \frac{1}{2} \hat{u}_t^2 = -(1 - \rho) \left(\frac{\bar{N}}{U} \right) \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) = -\eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right). \tag{37}
\]

This then implies \(\hat{u}_t^2 = \eta^2 \hat{n}_{t-1}^2 \), so (37) becomes

\[
\hat{u}_t = -\eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) - \frac{1}{2} \hat{u}_{t-1}^2 = -\eta \hat{n}_{t-1} - \frac{1}{2} \eta (1 + \eta) \hat{n}_{t-1}^2,
\]

and

\[
\hat{v}_t = \hat{\theta}_t + \hat{u}_t = \hat{\theta}_t - 2 \eta (1 + \eta) \hat{n}_{t-1}^2,
\]

while \(\hat{v}_t^2 = (\hat{\theta}_t - \hat{\eta}_{t-1})^2 \). Hence,

\[
\hat{v}_t + \frac{1}{2} \hat{v}_t^2 = \hat{\theta}_t - \hat{\eta}_{t-1} - \frac{1}{2} \eta (1 + \eta) \hat{n}_{t-1}^2 + \frac{1}{2} \left(\hat{\theta}_t - \hat{\eta}_{t-1} \right)^2
\]

\[
= \left(\hat{\theta}_t + \frac{1}{2} \hat{\eta}_{t-1}^2 \right) - \eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) - \eta \hat{\theta}_t \hat{n}_{t-1}.
\tag{38}
\]

5.1.3 Second order approximation for labor market tightness

Now we need a second order approximation for labor market tightness, \(\hat{\theta}_t \). From \(N_t = (1 - \rho)N_{t-1} + \varphi \theta^\alpha U_t \), we obtain

\[
\bar{N} \left(1 + \hat{n}_t + \frac{1}{2} \hat{n}_t^2 \right) = (1 - \rho) \bar{N} \left(1 + \hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right)
\]

\[
+ \varphi \theta^\alpha \bar{U} \left(1 + \alpha \hat{\theta}_t + \frac{1}{2} \alpha^2 \hat{\theta}_t^2 \right) \left(1 - \eta \hat{n}_{t-1} - \frac{1}{2} \eta \hat{n}_{t-1}^2 \right).
\]

This implies

\[
\left(\hat{n}_t + \frac{1}{2} \hat{n}_t^2 \right) = (1 - \rho) \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) + \rho \left(\alpha \hat{\theta}_t - \eta \hat{n}_{t-1} + \frac{1}{2} \alpha^2 \hat{\theta}_t^2 - \alpha \eta \hat{\theta}_t \hat{n}_{t-1} - \frac{1}{2} \eta \hat{n}_{t-1}^2 \right)
\]

which, since \((1 - \rho) - \rho \eta = (1 - \rho) (1 - \rho \bar{N} / \bar{U}) = \rho_u\), can be written as

\[
\alpha \rho \left(\hat{\theta}_t + \frac{1}{2} \alpha \hat{\theta}_t^2 \right) = (\hat{n}_t - \rho_u \hat{n}_{t-1}) + \frac{1}{2} \left(\hat{n}_t^2 - \rho_u \hat{n}_{t-1}^2 \right) + \alpha \rho \eta \hat{\theta}_t \hat{n}_{t-1}.
\tag{39}
\]

But (39) implies that

\[
\hat{\theta}_t \hat{n}_{t-1} = \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \hat{n}_{t-1},
\tag{40}
\]

and

\[
\hat{\theta}_t^2 = \left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1})^2.
\tag{41}
\]
Now, using (39)-(41) in (38),
\[
\hat{\nu}_t + \frac{1}{2} \hat{\nu}_t^2 = \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) + \frac{1}{2} \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t^2 - \rho_u \hat{n}_{t-1}^2)
- \eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) + \frac{1}{2} (1 - \alpha) \left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1})^2
\]
(42)

5.1.4 The approximation for market consumption

We can now use the expressing for vacancies given by (42) in (36) to obtain
\[
\frac{C^m_t D_t}{C^m} \approx 1 + \frac{\bar{N}}{C^m} \left[(\hat{\zeta}_t + \hat{n}_t) + \frac{1}{2} (\hat{z}_t + \hat{n}_t)^2 \right]
- \frac{\kappa \bar{V}}{C^m} \left[\left(\frac{1}{\alpha \rho} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) + \frac{1}{2} \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t^2 - \rho_u \hat{n}_{t-1}^2) \right]
- \frac{\kappa \bar{V}}{C^m} \left[\frac{1}{2} (1 - \alpha) \left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1})^2 - \eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) \right].
\]

Using the approximation $\ln (1 + x) \approx x - \frac{1}{2} x^2$,
\[
\ln \left(\frac{C^m_t D_t}{C^m} \right) \equiv \hat{c}^m_t + \hat{d}_t = \left(\frac{\bar{N}}{C^m} \right) \left[(\hat{\zeta}_t + \hat{n}_t) - \left(\frac{\kappa \bar{V}}{\alpha \rho \bar{N}} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right]
+ \frac{1}{2} \left(\frac{\bar{N}}{C^m} \right) (\hat{z}_t + \hat{n}_t)^2 - \frac{1}{2} \frac{\kappa \bar{V}}{C^m} \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t^2 - \rho_u \hat{n}_{t-1}^2)
- \frac{\kappa \bar{V}}{C^m} \left[\frac{1}{2} (1 - \alpha) \left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1})^2 - \eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) \right]
- \frac{1}{2} \left(\frac{\bar{N}}{C^m} \right)^2 \left[(\hat{\zeta}_t + \hat{n}_t) - \left(\frac{\kappa \bar{V}}{\alpha \rho \bar{N}} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right]^2.
\]

Hence
\[
\hat{c}^m_t = -\hat{d}_t + \left(\frac{\bar{N}}{C^m} \right) \left[(\hat{\zeta}_t + \hat{n}_t) - \left(\frac{\kappa \bar{V}}{\alpha \rho \bar{N}} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right]
+ \frac{1}{2} \left(\frac{\bar{N}}{C^m} \right) (\hat{z}_t + \hat{n}_t)^2 - \frac{1}{2} \frac{\kappa \bar{V}}{C^m} \left(\frac{1}{\alpha \rho} \right) (\hat{n}_t^2 - \rho_u \hat{n}_{t-1}^2)
- \frac{\kappa \bar{V}}{C^m} \left[\frac{1}{2} (1 - \alpha) \left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1})^2 - \eta \left(\hat{n}_{t-1} + \frac{1}{2} \hat{n}_{t-1}^2 \right) \right]
- \frac{1}{2} \left(\frac{\bar{N}}{C^m} \right)^2 \left[(\hat{\zeta}_t + \hat{n}_t) - \left(\frac{\kappa \bar{V}}{\alpha \rho \bar{N}} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right]^2.
\]
(43)

and
\[
(\hat{c}^m_t)^2 = \left(\frac{\bar{N}}{C^m} \right)^2 \left[(\hat{\zeta}_t + \hat{n}_t) - \left(\frac{\kappa \bar{V}}{\alpha \rho \bar{N}} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right]^2.
\]
(44)

since \hat{d}_t is already second order,
5.2 Evaluating utility

Repeating (35),

\[
U(C_t) = U(\bar{C}) + U_c\bar{C}^m \left(\bar{c}_t^m + \frac{1}{2} (\bar{c}_t^m)^2 \right) - U_c w^u \bar{N} \left(\hat{n}_t + \frac{1}{2} \hat{n}_t^2 \right) \\
- \frac{1}{2} \hat{\sigma} U_c \bar{C}^m \left[\bar{c}_t^m - \left(\frac{w^u \bar{N}}{\bar{C}^m} \right) \hat{n}_t \right]^2.
\]

Recalling that

\[
\delta_1 = 1 - w^u - \frac{\kappa \bar{V}}{\alpha \rho N}
\]

and noting that

\[
\frac{\kappa \bar{V}}{\alpha \rho N} (\rho_u + \alpha \eta) = (1 - \rho) \frac{\kappa \bar{V}}{\alpha \bar{U}} \left(\alpha - 1 + \frac{\bar{U}}{\rho N} \right) = \delta_2,
\]

we can express utility, after some simplification, as

\[
U(C_t) = U(\bar{C}) - U_c \bar{C}^m \hat{d}_t + U_c \bar{C}^m \left(\frac{\bar{N}}{\bar{C}^m} \right) (\hat{z}_t + \delta_1 \hat{n}_t + \delta_2 \hat{n}_{t-1}) \\
+ U_c \bar{C}^m \left(\frac{\bar{N}}{\bar{C}^m} \right) \left(\frac{1}{2} \hat{z}_t^2 + \hat{z}_t \hat{n}_t + \frac{1}{2} \delta_1 \hat{n}_t^2 + \frac{1}{2} \delta_2 \hat{n}_{t-1}^2 \right) \\
- \frac{1}{2} U_c \bar{C}^m (1 - \alpha) \frac{\kappa \bar{V}}{\bar{C}^m} \left[\left(\frac{1}{\alpha \rho} \right)^2 (\hat{n}_t - \rho_u \hat{n}_{t-1}) \right] \\
- \frac{1}{2} \hat{\sigma} U_c \bar{C}^m \left(\frac{\bar{N}}{\bar{C}^m} \right)^2 (\hat{z}_t + \delta_1 \hat{n}_t + \delta_2 \hat{n}_{t-1})^2. \tag{45}
\]

5.3 The present discounted value of utility

From (45),

\[
\sum_{i=0}^{\infty} \beta^i U(C_{t+i}) = \frac{U(\bar{C})}{1 - \beta} - U_c \bar{C}^m \sum_{i=0}^{\infty} \beta^i \hat{d}_{t+i} + U_c \bar{N} \sum_{i=0}^{\infty} \beta^i (\hat{z}_{t+i} + \delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1}) \\
+ \frac{1}{2} U_c \bar{N} \sum_{i=0}^{\infty} \beta^i (\hat{z}_{t+i}^2 + \delta_1 \hat{n}_{t+i}^2 + \delta_2 \hat{n}_{t+i-1}^2) + U_c \bar{N} \sum_{i=0}^{\infty} \beta^i \hat{z}_{t+i} \hat{n}_{t+i} \\
- \frac{1}{2} U_c (1 - \alpha) \kappa \bar{V} \left(\frac{1}{\alpha \rho} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \rho_u \hat{n}_{t+i-1})^2 \\
- \frac{1}{2} \hat{\sigma} U_c \bar{C}^m \left(\frac{\bar{N}}{\bar{C}^m} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{z}_{t+i} + \delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1})^2.
\]
5.3.1 First order terms

In section 1, it is shown that in the efficient equilibrium, $\delta_1 = -\beta \delta_2$. Therefore, the first order terms become

$$-U_c \hat{N} \delta_2 \sum_{i=0}^{\infty} \beta^i (\beta \hat{n}_{t+i} - \hat{n}_{t+i-1}) + t.i.p.$$

$$= -U_c \hat{N} \delta_2 \{ \beta \hat{n}_t - \hat{n}_{t-1} + \beta^2 \hat{n}_{t+1} - \beta \hat{n}_t + \ldots \}$$

$$= U_c \hat{N} \delta_2 \hat{n}_{t-1}$$

which is independent of policy.

5.3.2 Second order terms

The second order terms are

$$X_t \equiv -U_c \bar{C} \sum_{i=0}^{\infty} \beta^i \hat{d}_{t+i} + \frac{1}{2} U_c \hat{N} \sum_{i=0}^{\infty} \beta^i (\delta_1 \hat{n}_{t+i}^2 + \delta_2 \hat{n}_{t+i-1}^2)$$

$$+ U_c \hat{N} \sum_{i=0}^{\infty} \beta^i \hat{z}_{t+i} \hat{n}_{t+i} - \frac{1}{2} U_c (1 - \alpha) \kappa \hat{V} \left(\frac{1}{\alpha \rho} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \rho \hat{n}_{t+i-1})^2$$

$$- \frac{1}{2} \delta U_c \bar{C} \sum_{i=0}^{\infty} \beta^i \left(\hat{z}_{t+i} + \delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1} \right)^2,$$

plus a term in \hat{z}^2_t that is independent of policy.

Price dispersion term Up to second order,

$$\sum_{i=0}^{\infty} \beta^i d_{t+i} = -\frac{\varepsilon}{2\delta} \sum_{i=0}^{\infty} \beta^i \pi_{t+i}^2$$

where δ is the standard new Keynesian coefficient giving the elasticity of inflation with respect to marginal cost.

Term in employment squared The next term is

$$\frac{1}{2} U_c \hat{N} \sum_{i=0}^{\infty} \beta^i \left(\delta_1 \hat{n}_{t+i}^2 + \delta_2 \hat{n}_{t+i-1}^2 \right) = -\frac{1}{2} \delta_2 U_c \hat{N} \sum_{i=0}^{\infty} \beta^i (\beta \hat{n}_{t+i}^2 - \hat{n}_{t+i-1}^2)$$

$$= -\frac{1}{2} \delta_2 U_c \hat{N} \hat{n}_{t-1}^2$$

which is independent of policy.

15
Cross products with productivity This leaves us to deal with

\[X_t \equiv U_c N \sum_{i=0}^{\infty} \beta^i \hat{z}_{t+i} \hat{n}_{t+i} - \frac{1}{2} U_c N (1 - \alpha) \left(\frac{\kappa \bar{V}}{N} \right) \left(\frac{1}{\alpha \rho} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \rho_u \hat{n}_{t+i-1})^2 \]

or

\[X_t \equiv U_{cc} N \sum_{i=0}^{\infty} \beta^i \hat{z}_{t+i} \hat{n}_{t+i} - \frac{1}{2} U_c \bar{N} (1 - \alpha) \left(\frac{\kappa \bar{V}}{N} \right) \left(\frac{1}{\alpha \rho} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \rho_u \hat{n}_{t+i-1})^2 \]

\[-\rho \delta_2 U_c \bar{C} m \left(\frac{\bar{N}}{C m} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \hat{n}_{t+i-1}) \hat{z}_{t+i} \]

\[-\frac{1}{2} \rho \delta_2 U_c \bar{C} m \left(\frac{\bar{N}}{C m} \right)^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \hat{n}_{t+i-1})^2. \] \hspace{1cm} (46)

Start with the third term involving the cross product expression, \((\hat{n}_{t-1} - \beta \hat{n}_t) \hat{z}_t\). Using (32),

\[(\hat{n}_{t-1} - \beta \hat{n}_t) \hat{z}_t = \hat{n}_{t-1} \hat{z}_t - \beta \hat{n}_t \hat{z}_t = \hat{n}_{t-1} \hat{z}_t \]

\[-\beta \hat{n}_t \left\{ \delta_2 [(1 + \beta) \hat{n}_t - \beta E_t \hat{\hat{n}}_{t+1} - \hat{n}_{t-1}^e] - \left(\frac{\bar{C}}{Y} \right) \left(\frac{1}{\sigma} \right) \hat{\hat{r}}_t \right\} \]

\[-\beta \hat{n}_t E_t \hat{z}_{t+1} \]

so

\[\sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \beta \hat{n}_t) \hat{z}_{t+i} = \hat{n}_{t-1} \hat{z}_t - \beta \hat{n}_t E_t \hat{z}_{t+1} \]

\[-\beta \hat{n}_t \left\{ \delta_2 [(1 + \beta) \hat{n}_t - \beta E_t \hat{\hat{n}}_{t+1} - \hat{n}_{t-1}^e] - \left(\frac{\bar{C}}{Y} \right) \left(\frac{1}{\sigma} \right) \hat{\hat{r}}_t \right\} \]

\[+\beta \hat{n}_t E_t \hat{z}_{t+1} - \beta^2 E_t \hat{n}_{t+1} \hat{z}_{t+2} \]

\[-\beta^2 E_t \hat{n}_{t+1} \left\{ \delta_2 [(1 + \beta) \hat{n}_t - \beta E_t \hat{\hat{n}}_{t+2} - \hat{n}_{t-1}^e] - \left(\frac{\bar{C}}{Y} \right) \left(\frac{1}{\sigma} \right) \hat{\hat{r}}_t \right\} \]

\[+\ldots \]

\[= \hat{n}_{t-1} \hat{z}_t - \sum_{i=0}^{\infty} \beta^i \left\{ \delta_2 [(1 + \beta) \hat{n}_{t+i} - \beta E_t \hat{\hat{n}}_{t+i+1} - \hat{n}_{t+i-1}^e] - \left(\frac{\bar{C}}{Y} \right) \left(\frac{1}{\sigma} \right) \hat{\hat{r}}_{t+i} \right\} \hat{n}_{t+i} \]

But \(\hat{n}_{t-1} \hat{z}_t\) is independent of policy at time \(t\).

So the terms in \(X_t\) involving cross product terms with the shocks (the first and third terms in
46) become, in expected present value terms,\(^4\)

\[
U_c \tilde{N} \sum_{i=0}^{\infty} \beta^i \hat{n}_{t+i} \hat{z}_{t+i} - \hat{\sigma} \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i} \right) \hat{z}_{t+i}
\]

\[
= U_c \tilde{N} \sum_{i=0}^{\infty} \beta^i \left\{ \hat{n}_{t+i} \hat{z}_{t+i} + \beta \hat{\sigma} \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \left[(1 + \beta) \hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i-1}^e \right] \hat{n}_{t+i} - \beta \delta_2 \hat{r}_{t+i} \hat{n}_{t+i} \right\}.
\]

>From (31),

\[
\hat{n}_t \hat{z}_t = \left[(1 - \alpha) \left(\frac{\kappa V}{\alpha \rho N} \right) \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_t^e - \delta_1 \hat{r}_t \right) \right] \hat{n}_t.
\]

Using this to replace \(\hat{n}_t \hat{z}_t\) in the expression for the present discounted value expression yields

\[
U_c \tilde{N} \sum_{i=0}^{\infty} \beta^i \left[(1 - \alpha) \left(\frac{\kappa V}{\alpha \rho N} \right) \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_t^e - \delta_1 \hat{r}_t \right) \right] \hat{n}_{t+i} + U_c \tilde{N} \beta \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \sum_{i=0}^{\infty} \beta^{i+1} \left[(1 + \beta) \hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i-1}^e \right] \hat{n}_{t+i} - \beta \delta_2 \hat{r}_{t+i} \hat{n}_{t+i}.
\]

The real interest rate terms cancel out since \(\delta_1 - \beta \delta_2 = 0\), so we are left with

\[
U_c \tilde{N} \sum_{i=0}^{\infty} \beta^i \left[(1 - \alpha) \left(\frac{\kappa V}{\alpha \rho N} \right) \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_t^e \right) \right] \hat{n}_{t+i} + U_c \tilde{N} \beta \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \sum_{i=0}^{\infty} \beta^{i+1} \left[(1 + \beta) \hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i-1}^e \right] \hat{n}_{t+i}.
\]

for the cross product terms involving \(\hat{n}\) and \(\hat{z}\). But

\[
\left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_t^e \right) \hat{n}_t = \hat{\theta}_t^e \left(\rho_u \hat{n}_{t-1} + \alpha \rho \hat{\theta}_t \right) - \beta E_t \hat{\theta}_t^e \rho_u \hat{n}_t,
\]

so when we take present discounted values, the \(\hat{\theta}_t^e \rho_u \hat{n}_{t-1}\) and \(\beta E_t \hat{\theta}_t^e \rho_u \hat{n}_{t+i}\) terms will cancel (except for the first, \(\rho_u \hat{\theta}_t^e \hat{n}_{t-1}\), but that is independent of policy. Thus,

\[
\sum_{i=0}^{\infty} \beta^i \left(\hat{\theta}_t^e - \beta \rho_u E_t \hat{\theta}_t^e \right) \hat{n}_{t+i} = \alpha \rho \sum_{i=0}^{\infty} \beta^i \hat{\theta}_{t+i} \hat{\theta}_{t+i} + \rho_u \hat{n}_{t-1} \hat{\theta}_t.
\]

\(^4\)The coefficient on \(\hat{r}_t \hat{n}_t\) is \(\beta \hat{\sigma} \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \left(\frac{\hat{r}_t}{\sigma} \right) \left(\frac{1}{d} \right)\), but

\[
\beta \hat{\sigma} \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \left(\frac{\hat{r}_t}{\sigma} \right) \left(\frac{1}{d} \right) = \beta \sigma \left(\frac{C_m}{C} \right) \left(\frac{\tilde{N}}{C_m} \right) \delta_2 \left(\frac{\hat{r}_t}{\sigma} \right) \left(\frac{1}{d} \right) = \beta \delta_2.
\]
Hence, for the PDV of the cross product terms we have

\[
\sum_{i=0}^{\infty} \beta^i B_t+i = U_c \hat{N}(1-\alpha) \left(\frac{\kappa \hat{V}}{N} \right) \sum_{i=0}^{\infty} \beta^i \hat{\theta}_{t+i} \hat{\theta}_{t+i}^e \\
+ U_c \hat{N} \sigma \left(\frac{\hat{N}}{C_m} \right) \delta_2 \sum_{i=0}^{\infty} \beta^{i+1} [(1+\beta)\hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i}^e - \hat{n}_{t+i-1}^e] \hat{n}_{t+i}
\]

(48)

Cross products with other variables

Define

\[
\sum_{i=0}^{\infty} \beta^i G_{t+i} \equiv -\frac{1}{2} U_c \hat{N}(1-\alpha) \left(\frac{\kappa \hat{V}}{N} \right) \left(\frac{1}{\alpha \rho} \right) \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i} - \rho_u \hat{n}_{t+i-1})^2 \\
- \frac{1}{2} \sigma U_c \hat{N} \left(\frac{\hat{N}}{C_m} \right) \sum_{i=0}^{\infty} \beta^i (\delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1})^2
\]

as the present discounted value of the cross product terms among the variables in \(X_t \) (i.e., terms 2 and 4 of 46). From (41), this can be written as

\[
\sum_{i=0}^{\infty} \beta^i G_{t+i} \equiv -\frac{1}{2} U_c \hat{N}(1-\alpha) \left(\frac{\kappa \hat{V}}{N} \right) \sum_{i=0}^{\infty} \beta^i \hat{\theta}_{t+i}^2 \\
- \frac{1}{2} \sigma U_c \hat{N} \left(\frac{\hat{N}}{C_m} \right) \sum_{i=0}^{\infty} \beta^i (\delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1})^2
\]

For future reference, notice that

\[
\sum_{i=0}^{\infty} \beta^i (\delta_1 \hat{n}_{t+i} + \delta_2 \hat{n}_{t+i-1})^2 = \delta_2^2 \sum_{i=0}^{\infty} \beta^i (-\beta \hat{n}_{t+i} + \hat{n}_{t+i-1})^2 = \delta_2^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i-1} - \beta \hat{n}_{t+i})^2.
\]

5.3.3 Collecting results on all second order product terms

Adding together the PDVs of \(B_t \) and \(G_t \),

\[
X_t = (1-\alpha) U_c \hat{N} \left(\frac{\kappa \hat{V}}{N} \right) \sum_{i=0}^{\infty} \beta^i \hat{\theta}_{t+i} \hat{\theta}_{t+i}^e \\
+ \sigma U_c \hat{N} \left(\frac{\hat{N}}{C_m} \right) \delta_2^2 \sum_{i=0}^{\infty} \beta^{i+1} [(1+\beta)\hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i}^e - \hat{n}_{t+i-1}^e] \hat{n}_{t+i} \\
- \frac{1}{2} U_c \hat{N}(1-\alpha) \left(\frac{\kappa \hat{V}}{N} \right) \sum_{i=0}^{\infty} \beta^i \hat{\theta}_{t+i}^2 \\
- \frac{1}{2} \sigma U_c \hat{N} \left(\frac{\hat{N}}{C_m} \right) \delta_2^2 \sum_{i=0}^{\infty} \beta^i (\hat{n}_{t+i-1} - \beta \hat{n}_{t+i})^2 + t.i.p
\]

(50)
or

\[X_t = -\frac{1}{2} (1 - \alpha) U_c \left(\frac{\kappa V}{N} \right) \sum_{i=0}^{\infty} \beta^i \left(\hat{\theta}_{t+i} - \hat{\theta}_{t+i}^e \right)^2 \]

\[+ \sigma U_c \tilde{N} \left(\frac{\tilde{N}}{C_m} \right) \delta_2^2 \sum_{t=0}^{\infty} \beta^{t+1} \left[(1 + \beta) \hat{n}_{t+i} - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i+1}^{e*} \right] \hat{n}_{t+i} \]

\[- \frac{1}{2} \sigma U_c \tilde{N} \left(\frac{\tilde{N}}{C_m} \right) \delta_2^2 \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i} \right)^2 + \text{t.i.p} \]

(51)

Terms involving the CRRA Start by focusing on all the terms that are multiplied by \(\sigma \).

These are \(\sigma U_c \tilde{N} \left(\frac{\tilde{N}}{C_m} \right) \delta_2^2 \) times

\[J_t = \sum_{i=0}^{\infty} \beta^{i+1} \left[(1 + \beta) \hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i+1}^{e*} \right] \hat{n}_{t+i} - \frac{1}{2} \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i} \right)^2 . \]

(52)

First, note that

\[\left[(1 + \beta) \hat{n}_{t}^e - \beta E_t \hat{n}_{t+1}^e - \hat{n}_{t+1}^{e*} \right] \hat{n}_{t} = \left[(\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) - (\beta E_t \hat{n}_{t}^e - \hat{n}_{t}^e) \right] \hat{n}_{t}. \]

It follows that

\[\sum_{i=0}^{\infty} \beta^{i+1} \left[(1 + \beta) \hat{n}_{t+i}^e - \beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i+1}^{e*} \right] \hat{n}_{t+i} = \sum_{i=0}^{\infty} \beta^{i+1} \left[(\beta \hat{n}_{t+i}^e - \hat{n}_{t+i-1}^{e*}) - (\beta E_t \hat{n}_{t+i+1}^e - \hat{n}_{t+i}^e) \right] \hat{n}_{t+i} \]

\[= \beta \left[(\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) - (\beta E_t \hat{n}_{t+1}^e - \hat{n}_{t}^e) \right] \hat{n}_{t} \]

\[+ \beta^2 \left[(\beta \hat{n}_{t+1}^e - \hat{n}_{t}^{e*}) - (\beta E_t \hat{n}_{t+2}^e - \hat{n}_{t+1}^e) \right] \hat{n}_{t+1} + \ldots \]

\[= (\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) \hat{n}_{t-1} - (\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) (\hat{n}_{t} - \beta n_t) \]

\[- \beta (\beta E_t \hat{n}_{t+1}^e - \hat{n}_{t}^e) (\hat{n}_{t} - \beta n_{t+1}) + \ldots + \text{t.i.p.} \]

\[= (\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) \hat{n}_{t-1} \]

\[- \sum_{i=0}^{\infty} \beta^i \left(\beta \hat{n}_{t+i}^e - \hat{n}_{t+i-1}^{e*} \right) (\hat{n}_{t+i-1} - \beta n_{t+i}) \]

Notice first term \((\beta \hat{n}_{t}^e - \hat{n}_{t-1}^{e*}) \hat{n}_{t-1} \) is independent of policy.

Using these in (52) yields

\[J_t = - \sum_{i=0}^{\infty} \beta^i \left(\beta \hat{n}_{t+i}^e - \hat{n}_{t+i-1}^{e*} \right) (\hat{n}_{t+i-1} - \beta n_{t+i}) - \frac{1}{2} \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i} \right)^2 + \text{t.i.p.} \]

\[= \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1}^e - \beta \hat{n}_{t+i}^e \right) (\hat{n}_{t+i-1} - \beta n_{t+i}) - \frac{1}{2} \sum_{i=0}^{\infty} \beta^i \left(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i} \right)^2 + \text{t.i.p.} \]

\[= -\frac{1}{2} \sum_{i=0}^{\infty} \beta^i \left[(\hat{n}_{t+i-1} - \beta \hat{n}_{t+i}) - (\hat{n}_{t+i-1}^e - \beta \hat{n}_{t+i}^e) \right]^2 + \text{t.i.p.} \]

19
So the terms involving $\hat{\sigma}$ are equal to

$$-\frac{1}{2}\hat{\sigma}U_{c\bar{N}} \left(\frac{\bar{N}}{Cm} \right) \delta^2 \sum_{i=0}^{\infty} \beta^i \left[(\hat{n}_{t+i-1} - \hat{n}_{t+i-1}^e) - \beta (\hat{n}_{t+i} - \hat{n}_{t+i}^e) \right]^2. \quad (53)$$

5.4 Final results

Collecting results, we can now write (51) as

$$X_t = -(1 - \alpha)\frac{1}{2}U_{c\bar{N}} \left(\frac{\kappa V}{N} \right) \sum_{i=0}^{\infty} \beta^i \left(\hat{\theta}_{t+i} - \hat{\theta}_t^e \right)^2$$

$$-\frac{1}{2}\hat{\sigma}U_{c\bar{N}} \left(\frac{\bar{N}}{Cm} \right) \delta^2 \sum_{i=0}^{\infty} \beta^i \left[(\hat{n}_{t+i-1} - \hat{n}_{t+i-1}^e) - \beta (\hat{n}_{t+i} - \hat{n}_{t+i}^e) \right]^2 + t.i.p.$$

Recalling that $\hat{\sigma} = \sigma \bar{C}/\bar{C}$, the correct second order approximation for welfare is therefore given by

$$\sum_{i=0}^{\infty} \beta^i U(C_t) = \frac{U(\bar{C})}{1 - \beta} - \frac{\varepsilon}{2\delta} U_{c\bar{C}} \sum_{i=0}^{\infty} \beta^i \pi_i^2$$

$$- (1 - \alpha)\frac{1}{2}U_{c\bar{N}} \left(\frac{\kappa V}{N} \right) \sum_{i=0}^{\infty} \beta^i \left(\hat{\theta}_{t+i} - \hat{\theta}_t^e \right)^2$$

$$-\frac{1}{2}\sigma U_{c\bar{N}} \left(\frac{\bar{N}}{C} \right) \delta^2 \sum_{i=0}^{\infty} \beta^i \left[(\hat{n}_{t+i-1} - \hat{n}_{t+i-1}^e) - \beta (\hat{n}_{t+i} - \hat{n}_{t+i}^e) \right]^2 + t.i.p.$$

It is useful at this point to recall that (23) implies we can write, in gap terms,

$$\hat{c}_t = -\left(\frac{\bar{N}}{\bar{C}} \right) (\delta_1 \hat{n}_{t+1} + \delta_2 \hat{u}_t) = \left(\frac{\bar{N}}{C} \right) (\delta_1 \hat{n}_t + \delta_2 \hat{n}_{t-1}).$$

Using the efficient condition, this becomes

$$\hat{c}_t = -\left(\frac{\bar{N}}{C} \right) \delta_2 (\beta \hat{n}_t - \hat{n}_{t-1}).$$

Hence, the last term in the welfare approximation is equal to

$$-\frac{1}{2}\sigma U_{c\bar{C}} \sum_{i=0}^{\infty} \beta^i \hat{c}_t^2.$$

Thus, we have that

$$\sum_{i=0}^{\infty} \beta^i U(C_t) = \frac{U(\bar{C})}{1 - \beta} - \frac{\varepsilon}{2\delta} U_{c\bar{C}} \sum_{i=0}^{\infty} \beta^i \left[\pi_t^2 + (1 - \alpha) \left(\frac{\delta}{\varepsilon} \right) \left(\frac{\kappa V}{C} \right) \hat{\theta}_{t+i}^2 + \sigma \left(\frac{\delta}{\varepsilon} \right) \hat{c}_{t+i}^2 \right]$$

$$+ t.i.p.$$
which is produces (23) of the text.

Since our structural model is expressed in terms of inflation and unemployment, it will be useful to similarly express the loss function in terms of these two variables. Since \(\hat{u}_{t+1} = -\eta \hat{n}_t \), and \(\hat{\theta}_t = \left(\frac{1}{\alpha \sigma} \right) (\hat{n}_t - \rho_u \hat{n}_{t-1}) \). In addition,

\[
\hat{c}_t = - \left(\frac{N}{\bar{C}} \right) \delta_2 (\beta \hat{n}_t - \hat{n}_{t-1}) = \frac{\delta_2 N}{\eta \bar{C}} (\beta \hat{u}_{t+1} - \hat{u}_t),
\]

so we can write the loss solely in terms of unemployment relative to the efficient level \(\hat{u}^e \). Doing so yields (26) of the text.