Confucianism and the East Asian Miracle

By Ming-Yih Liang

Appendix

This appendix contains proofs and derivations of Propositions 1-3 in the main text.

The aggregate dynamics of the economy can be conveniently described by a system of deterministic differential equations involving the variables C_1, C_2, N_{11}, and N_{12}. Maximization of utility by the two representative households results in the familiar Euler equations (11) and (21). As in the text, we denote the two constant growth rates of C_1 and C_2 as γ_{c1} and γ_{c2} where $\gamma_{c2} > \gamma_{c1}$ because $\rho_2 < \rho_1$. The striking aspect of equations (11) and (21) is that consumption growths do not depend on the number of intermediates, N_s.

To study the dynamic behavior of N_{11} and N_{12}, we must solve the system of simultaneous differential equations (14) and (20). The equality between w_1 and the marginal product of labor implies

\[w_1 = (1 - \alpha) \cdot (Y_1 / L_1). \]

After some manipulation, the interest rate, given by equations (7) and (8) can be written as

\[r_1 = (1 / \eta) \cdot (1 - \alpha) \cdot \alpha \cdot (Y_1 / N_1). \]

Hence, aggregate income, $w_1 L_1 + r_1 \eta_1 N_1$, equals $Y_1 - \alpha^2 Y_1$. It follows that the Western household’s budget constraint in equation (14) becomes

\[\eta \dot{N}_{11} = Y_1 - \alpha^2 Y_1 - C_1 - r_1 \eta N_{12} \]
\[= (1 - \alpha^2) Y_1 - C_1 - r_1 \eta N_{12} \]
\[= (1 + \alpha) (1 - \alpha) Y_1 - C_1 - r_1 \eta N_{12}. \]

If we substitute for Y_1 and r_1 from equations (5) and (8) into (A3) and also use equation (7), we get a formula for the Western household’s budget constraint.
By a similar process of substitution into equation (20), using equations (5), (6), (7), (8) and (18), we can also get a formula for the Eastern household’s budget constraint

\[\eta N_{11} = \left[\pi_1 \cdot \left(1 + \alpha \right) / \alpha \right] \cdot N_{11} \cdot \left(\pi_1 / \alpha \right) \cdot N_{12} - C_1. \]

We now must solve the system of simultaneous differential equations (A4) and (A5). We can substitute \((\lambda \pi_2 / \pi_1) \cdot (A4) \) into equation (A5) to get

\[\frac{\dot{N}_{12}}{2} = r_1 N_{12} + a \cdot C_1 - b \cdot C_2, \]

where \(a \) and \(b \) are defined as

\[a = \nu \lambda / \left[(\nu \lambda + \eta) \cdot \eta \right], \]
\[b = 1 / (\nu \lambda + \eta). \]

(A5) is a first-order, linear differential equation in \(N_{12} \). The general solution of this equation is

\[N_{12}(t) = (\text{constant}) \cdot e^{r_1 t} - \left[a / (r_1 - \gamma_{C_1}) \right] \cdot C_1(t) + \left[b / (r_1 - \gamma_{C_2}) \right] \cdot C_2(t). \]

We assume that the production function is sufficiently productive to ensure growth in consumption, but not so productive as to yield unbounded utility

\[r_1 > \rho > r_1 \cdot (1 - \theta). \]

The first part of this condition guarantees that \(\gamma_{C_2} > 0 \). The second part ensures that the attainable utility is bounded and implies that \(r_1 - \gamma_{C_2} > 0 \). The transversality condition for the dynamic optimization by the Eastern household implies

\[\lim_{t \to \infty} \left\{ N_{12}(t) \cdot e^{-r_1 t} \right\} = 0. \]

If we substitute for \(N_{12}(t) \) from equation (A7) into the transversality condition in equation (A9), we get
\[
\lim_{t \to \infty} \{ \text{constant} - \left[a \left(r_1 - \gamma_{c1} \right) \right] \cdot C_1(T_0) \cdot e^{-\left(r_1 - \gamma_{c1} \right) t} \\
+ \left[b \left(r_1 - \gamma_{c2} \right) \right] \cdot C_2(T_0) \cdot e^{-\left(r_1 - \gamma_{c2} \right) t} \} = 0.
\]

Since \(C_1(T_0) \) and \(C_2(T_0) \) are finite and \(r_1 - \gamma_{c2} > 0 \), \(r_1 - \gamma_{c1} > 0 \), the second and the third terms in the braces converge toward zero. Hence, the transversality condition requires the constant to be zero. The solution of \(N_{12} \) becomes

\[
N_{12}(t) = - \left[a \left(r_1 - \gamma_{c1} \right) \right] \cdot C_1(t) + \left[b \left(r_1 - \gamma_{c2} \right) \right] \cdot C_2(t).
\]

If we substitute \(N_{12}(t) \) from equation (A11) into equation (A4), we get

\[
\dot{N}_{11} = \left\{ \frac{\gamma_{c1}}{\alpha} \cdot (1 + \alpha) / \alpha - \gamma_{c1} \right\} \cdot N_{11} - f \cdot C_1 + g \cdot C_2,
\]

where \(f \) and \(g \) are defined as

\[
f = \frac{a \cdot r_1}{\left\{ \alpha \left(r_1 - \gamma_{c1} \right) \right\} + 1 / \eta},
\]

\[
g = \frac{b \cdot r_1}{\left\{ \alpha \left(r_1 - \gamma_{c2} \right) \right\}}.
\]

(A12) is a first-order, linear differential equation in \(N_{11} \). By repeating the same procedure as above, we can solve for \(N_{11} \) as

\[
N_{11}(t) = \left\{ \frac{f}{\left[r_1 \cdot (1 + \alpha) / \alpha - \gamma_{c1} \right]} \right\} \cdot C_1(t)
\]

\[
- \left\{ \frac{g}{\left[r_1 (1 + \alpha) / \alpha - \gamma_{c2} \right]} \right\} \cdot C_2(t).
\]

Finally, if we add (A11) and (A13) together, we get

\[
N_1(t) = N_{11}(t) + N_{12}(t)
\]

\[
= m \cdot C_1(t) + n \cdot C_2(t)
\]

where \(m \) and \(n \) are defined as

\[
m = \frac{b}{\left[r_1 \cdot (1 + \alpha) / \alpha - \gamma_{c1} \right]},
\]

\[
n = \frac{b}{\left[r_1 \cdot (1 + \alpha) / \alpha - \gamma_{c2} \right]}.
\]

The transversality conditions imply that \(r_1 - \gamma_{c1} > 0 \) and \(r_1 - \gamma_{c2} > 0 \), and hence \([r_1 \cdot (1 + \alpha) / \alpha] - \gamma_{c1} > 0 \), \([r_1 \cdot (1 + \alpha) / \alpha] - \gamma_{c2} > 0 \). Since \(a, b, f, g, m, n > 0 \), the dynamic analysis of \(N_{12}, \) \(N_{11} \) and \(N_1 \) as described in the text can be derived from the
following three theorems of real numbers:

Let \(A, B, C \) be real numbers and functions of time, \(t \). \(A(T_0), B(T_0), C(T_0) > 0 \) at \(t = T_0 \).

Theorem 1: If \(A = B - C \), and both \(B \) and \(C \) grow at positive constant rates with \(\dot{B}/B > \dot{C}/C \), then \(\dot{A}/A > \dot{B}/B \) initially and \(\dot{A}/A \) declines monotonically toward \(\dot{B}/B \) as \(t \to \infty \).

Theorem 2: If \(A = B - C \), and both \(B \) and \(C \) grow at positive constant rates with \(\dot{B}/B < \dot{C}/C \), then \(\dot{A}/A < \dot{B}/B \) initially and \(\dot{A}/A \) declines monotonically. Let \(\dot{A}/A > 0 \) initially, then \(\dot{A}/A \) declines until at the some point, \(t = T_1 > T_0 \), \(\dot{A}/A = 0 \) and \(A \) begins to decline from then on for \(t > T_1 \); \(A \) will eventually decline until at \(t = T_2 > T_1 \), when \(B = C \), \(A = 0 \). Immediately after \(t > T_2 \), \(\dot{A}/A > \dot{C}/C \) and then declines monotonically toward \(\dot{C}/C \) as \(t \to \infty \).

Theorem 3: If \(A = B + C \), and both \(B \) and \(C \) grow at positive constant rates with \(\dot{B}/B > \dot{C}/C \), then \(\dot{B}/B > \dot{A}/A > \dot{C}/C \) initially and \(\dot{A}/A \) rise monotonically toward \(\dot{B}/B \) as \(t \to \infty \).