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ONLINE APPENDIX

The appendix describes the estimation of the time-varying coefficients VAR model.

The model is estimated using the Gibbs sampling algorithm along the lines described

in Del Negro and Primiceri (2013). Each iteration of the algorithm is composed of

seven steps where a draw for a set of parameters is made conditional on the value of

the remaining parameters. To clarify the notation, let wt be a generic column vector.

We denote wT = [w′1, ..., w
′
T ]′. Below we report the conditional distributions used in

the seven steps of the algorithm:

1. p(σT |xT ,θT ,φT ,Ω,Ξ,Ψ, sT )

2. p(φT |xT ,θT ,σT ,Ω,Ξ,Ψ)

3. p(θT |xT ,σT ,φT ,Ω,Ξ,Ψ)

4. p(Ω|xT ,θT ,σT ,φT ,Ξ,Ψ)

5. p(Ξ|xT ,θT ,σT ,φT ,Ω,Ψ)

6. p(Ψi|xT ,θT ,σT ,φT ,Ω,Ξ), i = 1, 2, 3, 4

7. p(sT |xT ,θT ,σT ,φT ,Ω,Ξ,Ψ) 1
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1st be a n × 1 vector whose elements can take integer values between 1 to 7 which is used for

drawing σT .
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Priors Specification

We assume that the covariance matrices Ω, Ξ and Ψ and the initial states, θ0, φ0

and logσ0, are independent, the prior distributions for the initial states are Normal

and the prior distributions for Ω−1, Ξ−1 and Ψ−1i are Wishart. More precisely

θ0 ∼ N(θ̂, 4V̂θ)

logσ0 ∼ N(log σ̂0, In)

φi0 ∼ N(φ̂i, V̂φi
)

Ω−1 ∼ W (Ω−1, ρ
1
)

Ξ−1 ∼ W (Ξ−1, ρ
2
)

Ψ−1i ∼ W (Ψ−1i , ρ
3i

)

where W (S, d) denotes a Wishart distribution with scale matrix S and degrees of

freedom d and In is a n×n identity matrix where n is the number of variables in the

VAR.

Prior means and variances of the Normal distributions are calibrated using a time

invariant VAR for xt estimated using the first τ = 48 observations. θ̂ and V̂θ are set

equal to the OLS estimates. Let Σ̂ be the covariance matrix of the residuals ût of the

initial time-invariant VAR. We apply the same decomposition discussed in the text

Σ̂ = F̂D̂F̂′ and set log σ̂0 equal to the log of the diagonal elements of D̂1/2. φ̂i is set

equal to the OLS estimates of the coefficients of the regression of ûi+1,t, the i+ 1-th

element of ût, on −û1,t, ...,−ûi,t and V̂φi equal to the estimated variances.

We parametrize the scale matrices as follows Ω = ρ
1
(λ1V̂

f
θ), Ξ = ρ

2
(λ2In) and

Ψi = ρ
3i

(λ3V̂
f
φi

). The degrees of freedom for the priors on the covariance matrices ρ
1

and ρ
2

are set equal to the number of rows Ω−1 and In plus one respectively while ρ
3i

is i + 1 for i = 1, ..., n− 1. We assume λ1 = 0.005, λ2 = 0.01 and λ3 = 0.01. Finally

V̂f
θ and V̂f

φi
are obtained as V̂θ and V̂φi

but using the estimates of the whole sample.
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Gibbs sampling algorithm

Let T̄ be the total number of observations, in our case equal to 204. To draw realiza-

tions from the posterior distribution we use T = T̄ − τ/2 observations starting from

τ/2 + 1.2 The algorithm works as follows:

Step 1 : sample σT . The states σT are drawn using the algorithm of Kim, Shep-

hard and Chib (1998, KSC hereafter). Let x∗t ≡ F−1t (xt −Wtθt) = D
1/2
t ut, where

ut ∼ N(0, In), Wt = (In ⊗wt), and wt = [1 x′t−1...x
′
t−p]. Notice that conditional on

xT ,θT , and φT , x∗t is observable. Therefore, by squaring and taking logs, we obtain

the following state-space representation

x∗∗t = 2rt + υt (1)

rt = rt−1 + ζt (2)

where x∗∗i,t = log(x∗i,t
2), υi,t = log(u2

i,t) and rt = logσi,t.
3 The above system is non-

normal since the innovation in (1) is distributed as logχ2(1). Following KSC, we use

a mixture of 7 Normal densities with mean mj − 1.2704, and variance v2j (j=1,...,7)

to approximate the system with a Gaussian one (see Table A1 for the values used).

In practice the algorithm of Carter and Kohn (1994, CK henceforth) is used to draw

rt using, as density of υi,t, the one indicated by the value of si,t: (υi,t|si,t = j) ∼

N(mj − 1.2704, v2j ). More precisely rt is drawn from N(rt|t+1,Rt|t+1), where rt|t+1 =

E(rt|rt+1,x
t,θT ,φT ,Ω,Ξ,Ψ, sT , ) and Rt|t+1 = V ar(rt|rt+1,x

t,θT ,φT ,Ω,Ξ,Ψ, sT )

are the conditional mean and variance obtained from the backward recursion equa-

tions.

2We start the sample from τ/2 + 1 instead of τ in order to not to lose too many data points.
3We do not use any offsetting constant since given that the variables are in logs multiplied by

100, we do not have numerical problems.
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Table A1

j qj mj v2j

1.0000 0.0073 -10.1300 5.7960

2.0000 0.1056 -3.9728 2.6137

3.0000 0.0000 -8.5669 5.1795

4.0000 0.0440 2.7779 0.1674

5.0000 0.3400 0.6194 0.6401

6.0000 0.2457 1.7952 0.3402

7.0000 0.2575 -1.0882 1.2626

Step 2 : sample φT . Let x̂t = xt −Wtθt. The i + 1-th (i = 1, ..., n− 1) equation

of the system F−1t x̂t = D
1/2
t ut can be written as

x̂i+1,t = −x̂[1,i],tφi,t + σi,tui+1,t i = 2, ..., n (3)

where σi,t and ui,t are the ith elements of σt and ut respectively and x̂[1,i],t =

[x̂1,t, ..., x̂i,t]. Conditional on θT and σT , equation (3) is the observable equation

of a state-space model where the states are φi,t. Moreover, since φi,t and φj,t are in-

dependent for i 6= j, the algorithm of CK can be applied equation by equation to draw

φi,t from a N(φi,t|t+1,Φi,t|t+1), where φi,t|t+1 = E(φi,t|φi,t+1,x
t,θT ,σT ,Ω,Ξ,Ψ) and

Φi,t|t+1 = V ar(φi,t|φi,t+1,x
t,θT ,σT ,Ω,Ξ,Ψ).

Step 3: sample θT . Consider the state-space representation

xt = Wtθt + εt (4)

θt = θt−1 + ωt. (5)

θt is drawn from a N(θt|t+1,Pt|t+1), where θt|t+1 = E(θt|θt+1,x
t,σT ,φT ,Ω,Ξ,Ψ)

and Pt|t+1 = V ar(θt|θt+1,x
t,σT ,φT ,Ω,Ξ,Ψ) are obtained using the CK algorithm.
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Step 4: sample Ω. A draw is obtained as follows: Ω = (MM′)−1 where M is an

(n2p+n)× ρ1 matrix whose columns are independent draws from a N(0,Ω
−1

) where

Ω = Ω +
∑T

t=1 ∆θt(∆θt)
′ (see Gelman et. al., 1995).

Step 5 : sample Ξ. As above, Ξ = (MM′)−1 where M is an n× ρ2 matrix whose

columns are independent draws from aN(0,Ξ
−1

) where Ξ = Ξ+
∑T

t=1 ∆ logσt(∆ logσt)
′.

Step 6: sample Ψi i = 1, ..., 5. As above, Ψi = (MM′)−1 where M is an i × ρ3i
matrix whose columns are independent draws from a N(0,Ψ

−1
i ) where Ψi = Ψi +∑T

t=1 ∆φi,t(∆φi,t)
′.

Step 7: sample sT . Each si,t is independently sampled from the discrete density

Pr(si,t = j|x∗∗i,t, ri,t) ∝ qjfN(x∗∗i,t|2ri,t+mj−1.2704, v2j ), where fN(x|µ, σ2) denotes the

Normal pdf with mean µ and variance σ2, and qj is the probability reported in Table

A1 associated to the j-th density.

We make 22000 draws discarding the first 20000 and collecting one out of two of

the remaining 2000 draws. The results presented in the paper are therefore based on

1000 draws from the posterior distribution. Parameters convergence is assessed using

trace plots.
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