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We examine how the premature death of eminent life scientists
alters the vitality of their fields. While the flow of articles by col-
laborators into affected fields decreases after the death of a star sci-
entist, the flow of articles by non-collaborators increases markedly.
This surge in contributions from outsiders draws upon a different
scientific corpus and is disproportionately likely to be highly cited.
While outsiders appear reluctant to challenge leadership within a
field when the star is alive, the loss of a luminary provides an op-
portunity for fields to evolve in new directions that advance the
frontier of knowledge.
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“A new scientific truth does not triumph by
convincing its opponents and making them

see the light, but rather because its

opponents eventually die, and a new
generation grows up that is familiar with it.”

Max Planck

Scientific Autobiography and Other Papers

Whether manna from heaven or the result of the purposeful application of
research and development, technological advances play a foundational role in all
modern theories of economic growth (Solow 1957, Romer 1990, Aghion and Howitt
1992). Only in the latter part of the nineteenth century, however, did techno-
logical progress start to systematically build upon scientific foundations (Mokyr
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1992, 2002). Economists—in contrast to philosophers, historians, and sociologists
(Kuhn 1962, Shapin 1996, Merton 1973)—have devoted surprisingly little effort
to understanding the processes and institutions that shape the evolution of sci-
ence.1 How do researchers identify problems worthy of study and choose among
potential approaches to investigate them?

Presumably these choices are driven by a quest for recognition and scientific
glory, but the view that scientific advances are the result of a pure competition
of ideas—one where the highest quality insights inevitably emerge as victori-
ous—has long been considered a Panglossian but useful foil (Kuhn 1962; Akerlof
and Michaillat 2017). Indeed, the provocative quote from Max Planck in the
epigraph of this paper underscores that even the most celebrated scientist of his
era understood that the pragmatic success of a scientific theory does not entirely
determine how quickly it gains adherents, or its longevity.

Can the idiosyncratic stances of individual scientists do much to alter, or at
least delay, the course of scientific advance? Perhaps for the sort of scientific
revolutions that Planck—the pioneer of quantum mechanics—likely had in mind,
but the proposition that established scientists are slower than novices in accept-
ing paradigm-shifting ideas has received little empirical support whenever it has
been put to the test (Hull, Tessner, and Diamond 1978; Gorham 1991; Levin,
Stephan, and Walker 1995). Paradigm shifts are rare, however, and their very
nature suggests that once they emerge, it is exceedingly costly to resist or ignore
them. In contrast, “normal” scientific advance—the regular work of scientists
theorizing, observing, and experimenting within a settled paradigm or explana-
tory framework—may be more susceptible to political jousting. The absence of
new self-evident and far-reaching truths means that scientists must compete in
a crowded intellectual landscape, sometimes savagely, for the supremacy of their
ideas (Bourdieu 1975).

In this paper, we use a difference-in-differences setup to test “Planck’s Princi-
ple” in the context of academic biomedical research, an enormous domain which
has been the province of normal scientific change ever since the “central dogma”
of molecular biology (Crick 1970) emerged as a unifying description of the infor-
mation flow in biological systems. Specifically, we examine how the premature
death of 452 eminent scientists alter the vitality (measured by publication rates
and funding flows) of subfields in which they actively published in the years im-
mediately preceding their passing, compared to matched control subfields. In
contrast with prior work that focused on collaborators (Azoulay, Graff Zivin, and
Wang 2010; Oettl 2012; Jaravel, Petkova, and Bell 2018; Mohnen 2018), our work
leverages new tools to define scientific subfields which allows us to expand our
focus to the response by scientists who may have similar intellectual interests with
the deceased stars without ever collaborating with them.

To our surprise, it is not competitors from within a subfield that assume the

1A notable exception is the theoretical model of scientific revolutions developed by Bramoullé and
Saint-Paul (2010).
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mantle of leadership, but rather entrants from other fields that step in to fill
the void created by a star’s absence. Importantly, this surge in contributions
from outsiders draws upon a different scientific corpus and is disproportionately
likely to be highly cited. Thus, consistent with the contention by Planck, the
loss of a luminary provides an opportunity for fields to evolve in novel directions
that advance the scientific frontier. The rest of the manuscript is dedicated to
elucidating the mechanisms responsible for this phenomenon.

It does not appear to be the case that stars use their influence over financial
or editorial resources to block entry into their fields, but rather that the very
prospect of challenging a luminary in the field serves as a deterrent for entry by
outsiders. Indeed, most of the entry we see occurs in those fields that lost a star
who was especially accomplished. Even in those fields that have lost a particularly
bright star, entry can still be regulated by key collaborators left behind. We find
suggestive evidence that this is true in fields that have coalesced around a narrow
set of techniques or ideas or where collaboration networks are particularly tight-
knit. We also find that entry is more anemic when key collaborators of the star
are in positions that allow them to limit access to funding or publication outlets
to those outside the club that once nucleated around the star.

To our knowledge, this manuscript is the first to examine the dynamics of
scientific evolution using the standard empirical tools of applied microeconomics.2

We conceptualize the death of eminent scientists as shocks to the structure of the
intellectual neighborhoods in which they worked several years prior to their death,
and implement a procedure to delineate the boundaries of these neighborhoods in
a way that is scalable, transparent, and does not rely on ad hoc human judgment.
The construction of our dataset relies heavily on the PubMed Related Citations
Algorithm [PMRA], which groups scientific articles into subfields based on their
intellectual content using abstract words, title words, and very detailed keywords
drawn from a controlled vocabulary thesaurus curated by the National Library
of Medicine. As such, we are able to delineate circumscribed areas of scientific
inquiry whose boundaries are not defined by shared training, collaboration, or
citation relationships.

In addition to providing evidence regarding a central question for scholars study-
ing the scientific process, our paper is among the very few economic studies that
attend to the ways in which scientists position themselves in intellectual space (cf.
Borjas and Doran [2015a, 2015b] and Myers [2018] for other notable examples).
As such, our work can be understood as integrating the traditional concerns of
economists—understanding how incentives and institutions influence the rate of

2Considerable work outside of economics has examined the evolution of scientific fields through net-
work and community detection techniques (e.g., Rosvall & Bergstrom 2008; Börner, Chen, and Boyack
2003; cf. Fortunato and Hric (2016) for a review of this fast-evolving research area). These approaches
rely on collaboration or citation links to define the vertices of the knowledge network used to partition
a scientific space into subfields. While social scientists have utilized these techniques to explain a wide
range of phenomena (e.g., Foster, Rzhetsky, and Evans 2015), these approaches are less well-suited to
our setting where citation and collaboration are among the primary outcomes of interest.
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knowledge production or diffusion—with those of cognate disciplines such as so-
ciology and philosophy, who have traditionally taken the direction of scientific
change as the central problem to be explained.

The rest of the paper proceeds as follows. In the next section, we examine the
institutional context and lay out our broad empirical strategy. In section II, we
then turn to data, methods and descriptive statistics. We report the results in
section III. Section IV concludes by outlining the implications of our findings for
future work.

I. Institutional Context and Empirical Design

Our empirical analyses are centered on the academic life sciences. The merits
of this focus are several fold. First, the field has been an important source of
scientific discovery over the past half century. Many modern medical therapies
can trace their origins to research conducted in academic laboratories (Sampat
and Lichtenberg 2011; Azoulay, Li, and Sampat 2017). These discoveries, in
turn, have generated enormous health and welfare gains for economies around
the world.

Second, the life science research workforce is large and specialized. The Faculty
Roster of the Association of American Medical Colleges lists more than 200,000
faculty members employed in U.S. medical schools and academic medical cen-
ters in 2015.3 Moreover, scientific discoveries over the past half-century have
greatly expanded the knowledge frontier, necessitating increasing specialization
by researchers and a greater role for collaboration (Jones 2009). If knowledge
and techniques remain at least partially tacit long after their initial discovery,
tightly-knit research teams may be able to effectively control entry into intellec-
tual domains. The size and maturity of this sector, including its extensive variety
of narrowly-defined subfields, makes it an ideal candidate for an inquiry into the
determinants of the direction of scientific effort in general, and how it is influenced
by elite scientists in particular.

Third, the academic research setting also offers the practical benefits of an
extensive paper trail of research inputs, outputs, and collaboration histories. On
the input side, reliance of researchers on one agency for the majority of their
funding raises the possibility that financial gatekeeping by elite scientists could
be used to regulate entry into scientific fields. Data on NIH funding at the
individual level, as well as membership in “study sections” (the peer-review panels
that evaluate the scientific merits of grant applications) will allow us to examine
such concerns directly. Most importantly for our study, the principal output of
researchers—publications—are all tagged by a controlled vocabulary of keywords
managed by the National Library of Medicine. This provides the raw material
that helps delineate scientific subfields without appealing to citation linkages or

3This figure excludes life science academics employed in graduate schools of arts and science or other
non-medical school settings such as MIT, Rockefeller University, The Salk Institute, UC Berkeley, the
intramural campuses of NIH, etc.
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collaborative relationships (the specifics of this process are described in detail in
Section II.B and Appendix C in the supplementary online material).

These many virtues, however, may come at the expense of generalizability.
While the life sciences span a wide range of research styles—from small-team data-
driven epidemiology, to medium-size laboratories under the helm of a single prin-
cipal investigator, to large-scale multi-institution clinical trials—most biomedical
researchers cluster topically and socially in small, quasi-independent subfields.
This broad domain seldom features exceedingly small research teams (as in pure
mathematics) or “big science” efforts where capital needs are so extensive and
specialized as to fully consolidate the field into a single or a handful of large
authorship teams (as in high-energy particle physics, e.g., Aad et al. 2015). As
such, one should refrain from applying our findings to other fields of science where
the structure of collaborative efforts and the degree of intellectual clustering are
likely to generate different patterns of succession, compared to those observed in
the life sciences.

Accounts by practicing scientists indicate that collaboration plays a large role
in both the creation and diffusion of new ideas (Reese 2004), and historians of
science have long debated the role of controversies and competition in shaping
the direction of scientific progress and the process through which new subfields
within the same broad scientific paradigm are born and grow over time (Hull
1988; Morange 1998; Shwed and Bearman 2010). Our study presents a unique
opportunity to test some of their insights in a way that is more systematic and
can yield generalizable insights on the dynamics of field evolution.

II. Empirical Design, Data, and Descriptive Statistics

Below, we provide a detailed description of the process through which the
matched scientist/subfield dataset used in the econometric analysis was assem-
bled. We begin by describing the criteria used to select our sample of superstar
academics, with a particular focus on “extinction events”; the set of subfields in
which these scientists were active prior to their death and the procedure followed
to delineate their boundaries. Finally, we discuss the matching procedure imple-
mented to identify control subfields associated with eminent scientists who did
not pass away but are otherwise similar to our treatment group.

A. Superstar sample

Our basic approach is to rely on the death of “superstar” scientists as a lever to
estimate the extent to which the production of knowledge in the fields in which
they were active changes after their passing. The study’s focus on the scientific
elite can be justified both on substantive and pragmatic grounds. The distribution
of publications, funding, and citations at the individual level is extremely skewed
(Lotka 1926; de Solla Price 1963) and only a tiny minority of scientists contribute,
through their published research, to the advancement of science (Cole and Cole
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1972). Stars also leave behind a corpus of work and colleagues with a stake in the
preservation of their legacy, making it possible to trace back their careers, from
humble beginnings to wide recognition and acclaim.

The elite academic life scientist sample includes 12,935 individuals, which cor-
responds to roughly 5% of the entire relevant labor market. In our framework,
a scientist is deemed elite if they satisfy at least one of the following criteria for
cumulative scientific achievement: (1) highly funded scientists; (2) highly cited
scientists; (3) top patenters; and (4) members of the National Academy of Sci-
ences or of (5) the National Academy of Medicine. Since these criteria are based
on extraordinary achievement over an entire scientific career, we augment this
sample using additional criteria to capture individuals who show great promise at
the early and middle stages of their scientific careers (so-called “shooting stars”).
These include: (6) NIH MERIT awardees; (7) Howard Hughes Medical Investiga-
tors; and (8) early career prize winners. Appendix A provides additional details
regarding these metrics of “superstardom” and explores the sensitivity of our core
set of results to the type of scientists (“cumulative stars” vs. “shooting stars”)
included in the sample.

For each scientist, we reconstruct their career from the time they obtained
their first position as independent investigators (typically after a postdoctoral
fellowship) until 2006. Our dataset includes employment history, degree held,
date of degree, gender, and department affiliations as well as complete list of
publications, patents and NIH funding obtained in each year by each scientist.4

The 452 scientists who pass away prematurely, and who are the particular focus
of this paper, constitute a subset of this larger pool of 12,935. To be included in
our sample, their deaths must intervene between 1975 and 2003 (this allows us to
observe at least three years’ worth of scientific output for every subfield after the
death of a superstar scientist). Although we do not impose any age cutoff, the
median and mean age at death is 61 with 85% of these scientists having passed
away before the age of 70 (we explore the sensitivity of our results to the age at
death in Appendix E). We also require evidence, in the form of published articles
and/or NIH grants, that these scholars were still in a scientifically active phase
of their career in the period just preceding their death (this is the narrow sense
in which we deem their deaths to have occurred prematurely).

Within this sample, 229 (51%) of these scientists pass away after a protracted
illness, whereas 185 (41%) die suddenly and unexpectedly. We were unable to
ascertain the particular circumstances of 37 (8.20%) death events.5 Table 1 pro-
vides descriptive statistics for the deceased superstar sample. The median star
received her degree in 1957 and died at the age of 61. 40% of the stars hold an

4Appendix B details the steps taken to ensure that the list of publications is complete and accurate,
even in the case of stars with frequent last names. Though we apply the term of “star” or “superstar” to
the entire group, there is substantial heterogeneity in intellectual stature within the sample (see Table 1).

5Table A3 in Appendix A provides the full list of deceased superstars, together with their year of birth
and death, cause of death, institutional affiliation at the time of their passing, and a short description of
their research expertise.
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MD degree (as opposed to a PhD or MD/PhD), and 90% of them are male. On
the output side, the stars each received an average of roughly 16.6 million dollars
in NIH grants, and published 138 papers that garnered 8,341 citations over the
course of their careers (as of 2015).

B. Delineating Research Fields

The source of the publication data is PubMed, an online resource from the
National Library of Medicine that provides fast, free, and reliable access to the
biomedical research literature. PubMed indexes more than 40,000 journals within
the life sciences.

To delineate the boundaries of the research fields in which each deceased star
was active, we develop an approach based on topic similarity between each article
where the star appeared as a last author in a window of five years prior to her
death, and the rest of the scientific literature.6 Specifically, we use the PubMed
Related Citations Algorithm (Lin and Wilbur 2007) which relies heavily on Med-
ical Subject Headings (MeSH), but not in any way on citation or collaboration
linkages.

MeSH terms constitute a controlled vocabulary maintained by the National Li-
brary of Medicine that provides a very fine-grained partition of the intellectual
space spanned by the biomedical research literature. Importantly for our pur-
poses, MeSH keywords are assigned to each publication by professional indexers
who focus solely on their scientific content. That said, the PubMed Related Ci-
tations Algorithm (hereafter PMRA) also uses title and abstract words as inputs,
which are selected by the authors, and may reflect their aspirations. While this
raises the possibility that our subfield definitions are not impervious to social
influences, it does offer one advantage, namely that our subfield boundaries can
quickly reflect the emergence of new terms whose inclusion in the official MeSH
thesaurus will occur with some lag.7 Regardless, as will become clear in the next
section, our difference-in-differences design alleviates the concern that idiosyn-
cratic features of PMRA might affect our conclusions, since these would influence
treatment and control subfields in a symmetric fashion.

We then use the “Related Articles” function in PubMed to harvest journal
articles that are intellectually proximate to the star scientists’ own papers in the
last five years of her life.8 Appendix C describes the algorithm in more detail and

6A robust social norm in the life sciences systematically assigns last authorship to the principal
investigator, first authorship to the junior author who was responsible for the conduct of the investigation,
and apportions the remaining credit to authors in the middle of the authorship list, generally as a
decreasing function of the distance from the extremities (Zuckerman 1968; Nagaoka and Owan 2014).
Only in the case of last authorship can we unambiguously associate the star with a subfield.

7Importantly, defining subfields as isomorphic to the set of articles related (in a PMRA-sense) to a
source article does not imply a fixed number of articles per subfield. On the contrary, PMRA-generated
subfields can be of arbitrary large size. In Appendix C, we document the variation in subfield size
and explore the sensitivity of our results to alternate subfield definitions, including those that exclude
potentially endogenous intellectual linkages.

8To facilitate the harvesting of PubMed-related records on a large scale, we have developed an
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performs extensive robustness checks. In particular, we verify that the cutoff rules
used by PMRA to generate a set of intellectual neighbors for a given source article
do not induce treated subfields to exhibit idiosyncratic truncation patterns—from
above or from below—compared to control subfields. Using a tunable version of
PMRA, we also assess the robustness of our core results to manipulations of these
cutoff rules. Reassuringly, our results are qualitatively similar regardless of the
rule employed.

To fix ideas, consider “The transcriptional program of sporulation in budding
yeast” [PubMed ID 9784122], an article published in the journal Science in 1998
originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist
who died in 2003 from pancreatic cancer. As can be seen in Appendix Figure C4,
PMRA returns 72 original related journal articles for this source publication.
Some of these intellectual neighbors will have appeared before the source to which
they are related, whereas others will have only been published after the source.
Some will represent the work of collaborators, past or present, of Herskowitz’s,
whereas others will represent the work of scientists he may never have come in
contact with during his life, much less collaborated with. The salient point is that
nothing in the process through which these related articles are identified biases us
towards (or away from) articles by collaborators, frequent citers of Herskowitz’s
work, or co-located researchers.

Consider now the second most-related article to Herskowitz’s Science paper
listed in Figure C4, “Phosphorylation and maximal activity of Saccharomyces
cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2.” Fig-
ure C5 in Appendix C displays the MeSH terms that tag this article along with
its source. As a byproduct, PMRA also provides a cardinal dyadic measure of in-
tellectual proximity between each related article and its associated source article.
In this particular instance, the relatedness score of “Phosphorylation...” is 94%,
whereas the relatedness score for the most distant related article in Figure C4,
“Catalytic roles of yeast...” is only 62%.

In the five years prior to his death (1998-2002), Herskowitz was the last author
on 12 publications, the publications most closely associated with his position as
head of a laboratory. For each of these source publications, we treat the set of
publications returned by PMRA as constituting a distinct subfield, and we create
a subfield panel dataset by counting the number of related articles in each of these
subfields in each year between 1975 and 2006. An important implication of this
data construction procedure is that the subfields we delineate are quite limited in
scope. One window into the degree of intellectual breadth for subfields is to gauge
the overlap between the articles that constitute any pair of subfields associated
with the same star. In the sample, the 452 deceased stars account for 3,076
subfields, and 21,661 pairwise combination of subfields (we are only considering

open-source software tool that queries PubMed and PMRA and stores the retrieved data in a MySQL
database. The software is available for download at http://www.stellman-greene.com/FindRelated/.
Prior research leveraging the intellectual linkages between articles generated by PMRA include Azoulay
et al. (2015), Azoulay et al. (2019), and Myers (2018).
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pairs of subfields associated with the same individual star). Appendix Figure C6
displays the histogram for the distribution of overlap, which is extremely skewed.
A full half of these pairs exhibit exactly zero overlap, whereas the mean of the
distribution is 0.06. To find pairs of subfields that display substantial amounts of
overlap (for example, half of the articles in subfield 1 also belong in subfield 2),
one must reach far into the right tail of the distribution, specifically, above the
98th percentile.

As such, the subfields we delineate are relatively self-contained. Performing
the analysis at the level of the subfield—rather than lumping together all the
subfields of an individual star—will provide us with an opportunity to exploit
variation in the extent of participation of the star within each of her subfields.
We will also check the validity of the main results when rolling the data up from
the subfield level to the star level in Appendix F. Finally, since even modest
amounts of overlap entail that the observations corresponding to the subfields
of individual stars will not be independent in a statistical sense, we will cluster
standard errors at the level of the star scientist.9

C. Identification Strategy

Given our interests in the effect of superstar death on entry into scientific sub-
fields, our empirical strategy is focused on changes in published research output
after the superstar passes away, relative to when she was still alive. To ensure
that we are estimating the effect of interest and not some other influence that
is correlated with the passage of time, our specifications include age and period
effects, as is the norm in studies of scientific productivity (Levin and Stephan
1991). These temporal controls are tantamount to using subfields that lost a
superstar in earlier or later periods as an implicit control group when estimating
entry into subfields that currently experienced the death of a superstar. If the
death of a superstar only represented a one-time shift in the level of entry into the
relevant subfields, this would not be problematic. But if these unfortunate events
affect trends—and not simply levels—of scientific activity, this approach may not
suffice to filter out the effect of time-varying omitted variables, even when flexible
age and calendar time controls are included in the econometric specification. One
tangible concern about time-varying effects relates to the life cycle of subfields,
where productive potential may initially increase over time before peaking and
then slowly declining.

To mitigate this threat to identification, our preferred empirical strategy relies
on the selection of a matched scientist/subfield for each treated scientist/subfield.
These control observations are culled from the universe of subfields in which su-
perstars who do not die are active (see Section II.A and Appendix D). Combining
the treated and control samples enables us to estimate the effect of superstar death

9The compactness of these subfields likely reflect the technology of research within the life sciences,
a similar exercise performed in a different domain of science, particularly those characterized by large
collaborative projects, might well result in subfields with substantially more overlap.
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in a difference-in-differences framework. Appendix Figure D1 illustrates the pro-
cedure used to identify control subfields in the particular case of the Herskowitz
publication highlighted above.

We begin by looking at all the articles that appeared in the same journal and
in the same year as the treated source articles. From this set of articles, we
keep only those that have one of the still-living superstars in the last author-
ship position. Then, using a “coarsened exact matching” procedure detailed in
Appendix D, the control source articles are selected such that (1) the number
of authors in the treated and control are approximately similar; (2) the age of
the treated and control superstars differ by no more than five years; and (3) the
number of citations received by the treated and source article are similar. For the
Herskowitz/“sporulation in budding yeast” pair, we can select 10 control articles
in this way. All of these controls were also published in Science in 1998, and
have between five and seven authors. One of these controls is “Hepatitis C Viral
Dynamics in Vivo...,” whose last author is Alan Perelson, a biophysicist at Los
Alamos National Lab. Perelson and Herskowitz obtained their PhD only a year
apart. The two papers had received 514 and 344 citations respectively by the
end 2003. Though this is a large difference, this places both well above the 99th

percentile of the citation distribution for 5-year old articles published in 1998.
One potential concern with the addition of this “explicit” control group is that

control subfields could be affected by the treatment of interest. What if, for
instance, a control source article happens to be related (in a PMRA sense) with
the treated source? Because the subfields identified by PMRA are narrow, this
turns out to be very infrequent. Nonetheless, we remove all such instances from
the data. We then find all the intellectual neighbors for these control source
articles using PMRA; a control subfield is defined by the set of related articles
returned by PMRA, in a manner that is exactly symmetric to the procedure used
to delineate treated subfields. When these related articles are parsed below to
distinguish between those published by collaborators and non-collaborators of the
star, or between those by intellectual outsiders and insiders, covariates for treated
and control observations will always be defined with perfect symmetry.

D. Descriptive Statistics

The procedure described above yields a total of 34,218 distinct subfields; 3,076
subfields correspond to one of the 452 dead scientists, whereas 31,142 subfields
correspond to one of 5,809 still-living scientists. Table 2 provides descriptive
statistics for control and treated subfields in the baseline year, i.e., the year of
death for the deceased scientist.10

Covariate balance. In the list of variables displayed in Table 2, a number of
covariates are balanced between treated and control subfields solely by virtue of

10We can assign a counterfactual year of death for each control subfield, since each control subfield is
associated with a particular treated subfield through the matching procedure described above.
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the coarsened exact matching procedure—for instance, (star) investigator year
of degree, the source article number of authors, or the source article number of
citations at baseline. However, there is nothing mechanical to explain the balance
between treated and control subsamples with respect to the stock of our main
outcome variable: the number of articles in the star’s field. Figure 1 compares
the distributions of the cumulative number of articles published in our sample of
subfields up to the year of death, broken down by treatment status. Overall, one
can observe a great deal of overlap between the two histograms; the means and
medians are virtually identical. Of course, balance in the levels of the outcome
variable is not technically required for the validity of the empirical exercise.11

Yet, given the ad hoc nature of the procedure used to identify control subfields,
this degree of balance is reassuring.

Another happy byproduct of our matching procedure is that treated and control
scientists also appear quite similar in the extent of their eminence at the time of
(counterfactual) death, whether such eminence is measured through NIH funding,
the number of articles published, or the number of citations these articles received.

Collaborators vs. non-collaborators. One critical aspect of the empirical
analysis is to distinguish between collaborators and non-collaborators of the star
when measuring publishing activity in a subfield. It is therefore crucial to describe
how this distinction can be made in our data. Information about the superstars’
colleagues stems from the Faculty Roster of the Association of American Medical
Colleges (AAMC), to which we secured licensed access for the years 1975 through
2006, and which we augmented using NIH grantee information (cf. Azoulay, Graff
Zivin, and Wang [2010] for more details).

An important implication of our reliance on these sources of data is that we
can only identify authors who are faculty members in U.S. medical schools, or
recipients of NIH funding. We cannot systematically identify scientists working
for industrial firms, or scientists employed in foreign academic institutions.12 The
great benefit of using AAMC data, however, is that they ensure we have at our
disposal both demographic and employment information for every individual in
the relevant labor market: their (career) age, type of degree awarded, place of
employment, gender, and research output, whether measured by publications or
NIH grants.

To identify authors, we match the authorship roster of each related article in
one of our subfields with the AAMC roster.13 We tag as a collaborator any
author who appeared as a co-author of the star associated with the subfield on
any publication prior to the death. Each related article is therefore assigned to

11What is required is that the trends in publication activity be comparable between treated and control
subfields up until the death of the treated scientist. We verify that this is the case below.

12We can identify trainees who later go on to secure a faculty position, but not those who do not stay
in academia.

13We limit ourselves to authors with relatively infrequent names. Though this may create some
measurement error, there is no reason to suspect that the wrongful attribution of articles to authors will
impact treated and control subfields in a differential way.
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one of two mutually-exclusive bins: the “collaborator” bin comprises the set of
publications with at least one identified author who coauthored with the star
prior to the year of death (or counterfactual death); the “non-collaborator” bin
comprises the set of publications with no identified author who coauthored with
the star prior to the year of death (or counterfactual death).14 As can be seen in
Table 2, roughly 11% of the publication activity at baseline can be accounted for
by collaborators. Moreover, this proportion is very similar for control and treated
subfields.15

A first look at subfield activity. Figure E1 in Appendix E confirms that the
treated and control subfields are on similar trajectories in publication activity
up to the time of superstar death (though they diverge after the death event).
This provides suggestive evidence for the validity of our research design, and is
notable since the coarsened exact matching procedure that generated the sample
of control subfields did not make any use of these outcomes. Moreover, the absence
of differential trends can be observed for overall activity, for activity restricted to
collaborators of the star, and for the publishing activity of non-collaborators.

More boldly, we can use these averages in the raw data to examine changes
in outcomes after the death. For both treated and control subfields, the curves
exhibit a pronounced inverted U-shaped pattern, with activity first increasing
until it reaches a peak roughly two years before the death of the star (or counter-
factual death for the control subfields and their associated stars). Activity then
decreases steadily, but the slope of the decrease appears more pronounced for
control subfields, relative to treated subfields (Panel A). This pattern is flipped
when examining activity due to collaborators (Panel B): the relative decline is
much more pronounced for treated subfields, which is consistent with the results
in Azoulay, Graff Zivin, and Wang (2010). Panel C, which focuses on subfield
activity limited to non-collaborators, provides the first non-parametric evidence
that the downward-sloping part of the activity curve is less steep for treated
subfields.

Figure E1 provides a transparent illustration of subfield publication activity
over time, which proceeds directly from averaging the raw data, but the evidence
it provides should be handled with an abundance of caution. First, it conflates cal-
endar time and experimental time, when in actuality the death events in the data
occur at varying frequencies between the years 1975 and 2003. Second, covariates
like field age are not perfectly balanced across the treated and control groups,
since the number of control subfields is not identical across treated subfields. Fi-
nally, it abstracts away from robust inference, and particularly from clustering:
one would expect the subfield outcomes associated with an identical star to be

14We identify the publications in the subfield for which the superstar is an author and eliminate them
from these calculations. As a result, any decrease in activity within the subfield cannot be ascribed to
the mechanical effect of its star passing away.

15We define collaboration status by looking at the authorship roster for the entire corpus of work
published by the star before or in the year of death, and not only with respect to the articles of the star
that belong to the focal subfield.
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correlated. Our econometric framework, described below, addresses these limita-
tions and as a result provides a more solid foundation for the estimation of the
causal effect of star death on the dynamics of subfield activity.

III. Results

The exposition of the econometric results proceeds in stages. After a review
of methodological issues, we provide results that pertain to the main effect of
superstar death on subfield growth, measured by publication rates and funding
flows. Next, we attempt to elucidate the mechanism (or set of mechanisms) at
work to explain our most robust finding, that of relative subfield growth in the
wake of a star’s passing, a growth entirely accounted for by contributions from
non-collaborators. We do so by examining the characteristics of the articles pub-
lished by non-collaborators, before turning to the characteristics of their authors.
We also explore heterogeneity in the treatment effect through the interaction
of the post-death indicator variable with various attributes of the stars and the
subfields.

A. Econometric Considerations

Our estimating equation relates publication or funding activity in subfield i in
year t to the treatment effect of losing a superstar:

E [yit|Xit] = exp
[
β0 + β1AFTER DEATHit

+ β2AFTER DEATHit × TREATi + f(AGEit) + δt + γi

]
(1)

where y is a measure of subfield activity, AFTER DEATH denotes an indicator
variable that switches to one in the year after the superstar associated with i
passes away, TREAT is an indicator variable for treated subfields, f(AGEit)
corresponds to a flexible function of the field’s age, the δt’s stand for a full set of
calendar year indicator variables, and the γi’s correspond to subfield fixed effects,
consistent with our approach to analyze changes in activity within subfield i
following the passing of a superstar.16

The subfield fixed effects control for many time-invariant characteristics that
could influence research activity, such as the need for capital equipment or the
extent of disease burden (e.g., for clinical fields). A pregnant metaphor for the
growth of scientific knowledge has been that of biological evolution (Hull 1988;
Chavalarias and Cointet 2013): a field is born when new concepts are introduced,
resulting in an accelerating production of “offspring” (articles), until the underly-
ing scientific community loses its thematic coherence, ushering in an era of decline

16To avoid confusion, we have suppressed any subscript for the superstars. This is without loss of
generality, since each subfield is uniquely associated with a single star.
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(or alternatively, splitting or merging events). To flexibly account for such life
cycle effects, we include subfield age indicator variables (where subfield age is
computed as the number of years since the year of publication for the source arti-
cle). The calendar year effects filter out the effects of the general expansion of the
scientific enterprise as measured by the number of journals and articles published
each year.17

We follow Jaravel et al. (2018) in including in our specification an indicator
for the timing of death that is common to treated and control subfields (whose
effect will be identified by the coefficient β1) in addition to the effect of inter-
est, an interaction between AFTER DEATH and TREAT (whose effect will
be identified by the coefficient β2). The effects of these two variables are sep-
arately identified because (i) death events are staggered across our observation
period and (ii) control subfields inherit a counterfactual date of death because
they are uniquely associated with a treated subfield through the matching proce-
dure described in section II.C. The inclusion of the common term addresses the
concern that age, calendar year, and subfield fixed effects may not fully account
for shifts in subfield activity around the time of the star’s passing. If this is
the case, AFTER DEATH will capture the corresponding transitory dynamics,
while AFTER DEATH × TREAT will isolate the causal effect of interest. Em-
pirically, we find that in some specifications, the common term has substantial
explanatory power, though its inclusion does not radically alter the magnitude of
the treatment effect.

Estimation. The dependent variables of interest, including publication counts
and NIH grants awarded, are skewed and non-negative. For example, 31.40% of
the subfield/year observations in the data correspond to years of no publication
activity; the figure climbs to 56.70% if one focuses on the count of NIH grants
awarded. Following a long-standing tradition in the study of scientific and tech-
nical change, we present quasi-maximum likelihood (hereafter QML) estimates
based on the conditional fixed effects Poisson model developed by Hausman,
Hall, and Griliches (1984). Because the Poisson model is in the linear expo-
nential family, the coefficient estimates remain consistent as long as the mean of
the dependent variable is correctly specified (Gouriéroux, Monfort, and Trognon
1984).

Inference. QML (i.e., “robust”) standard errors are consistent even if the under-
lying data generating process is not Poisson. In fact the Hausman et al. estimator
can be used for any non-negative dependent variables, whether integer or contin-
uous (Santos Silva and Tenreyro 2006), as long as the variance/covariance matrix
is computed using the outer product of the gradient vector (and therefore does

17It is not possible to separately identify calendar year effects from age effects in the “within subfield”
dimension of a panel in a completely flexible fashion, because one cannot observe two subfields at the
same point in time that have the same age but were born in different years (Hall, Mairesse, and Turner
2007).
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not rely on the Poisson variance assumption). Further, QML standard errors are
robust to arbitrary patterns of serial correlation (Wooldridge 1997), and hence
immune to the issues highlighted by Bertrand, Duflo, and Mullainathan (2004)
concerning inference in DD estimation. We cluster the standard errors around
superstar scientists in the results presented below.18

Dependent Variables. Our primary outcome variable is publication activity
in a subfield. However, we go beyond this raw measure by assigning the related
articles that together constitute the subfield into a variety of bins. For instance,
we can decompose publication activity in the subfield into two mutually exclusive
subfields: articles with a superstar on the authorship roster vs. articles without
a superstar; etc. Articles in each bin can then be counted and aggregated up to
the subfield/year level.

Capturing funding flows at the field level is slightly more involved. PubMed
systematically records NIH grant acknowledgements using grant numbers. Un-
fortunately, these grant numbers are often truncated and omit the grant cycle
information that could enable us to pin down unambiguously the particular year
in which the grant was awarded. When it is missing, we impute the award year
using the following rule: for each related publication that acknowledges NIH
funding, we identify the latest year in the three-year window that precedes the
publication during which funding was awarded through either a new award or a
competitive renewal. To measure funding activity in a subfield, we create a count
variable that sums all the awards received in particular year, where these awards
ultimately generate publications in the focal subfield.

B. Main effect of superstar death

Table 3 and Figure 2 present our core results. Overall, we find that publica-
tion activity increases slightly following the death of a star scientist who was an
active contributor to it, but the magnitude of the effect is modest (about 5.2%)
and imprecisely estimated (column 1). Yet, this result conceals a striking pattern
that is uncovered when we distinguish between publications by collaborators and
non-collaborators. The decline in publication activity accounted for by previous
collaborators of the star is large, on the order of 20.7% (column 2). This evidence
is consistent with previous findings, which showed that coauthors of superstar
scientists who die suffer a drop in output, particularly if their non-collaborative
work exhibited strong keyword overlap with the star, i.e., if they were intellectu-
ally connected in addition to being coauthors (Azoulay, Graff Zivin, and Wang
2010, Table VI, column 2).

18Knowledge spillovers and scientific breakthroughs, including the adoption of research tools, could
encourage innovation across related fields. This possibility is not entirely dealt with by clustering inference
at the star level, since spatial dependence in knowledge space could occur between any pair of subfields,
whereas clustering only allows for dependence among the subfields associated with the same star. As
it turns out, the Poisson conditional fixed effects estimator also provides a consistent estimator of the
variance in the presence of time-invariant patterns of spatial auto-correlation (Bertanha and Moser 2016).
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A limitation of the previous work focusing on the fate of collaborators after
the loss of an eminent scientist always lied in the failure to distinguish between
social and intellectual channels of influence, since every treated scientist was by
definition a collaborator, even if merely a casual one. In this study, we can relax
this constraint, and when we do, we find that relative publication activity by non-
collaborators in the subfield increases by a statistically significant 100× (e0.082 −
1) = 8.6% (column 3).19

We also explore the dynamics of the effects uncovered in Table 3. We do so by
estimating a specification in which the treatment effect is interacted with a set of
indicator variables corresponding to a particular year relative to the superstar’s
death, and then graphing the effects and the 95% confidence interval around them
(Panels A, B, and C of Figure 2 correspond to columns 1, 2, and 3 in Table 3).20

Two features of the figure are worthy of note. First, the dynamics amplify the
previous results in the sense that we see the effects increasing (in absolute value)
monotonically over time—there is no indication that the effects we estimated in
Table 3 are merely transitory. Five years after a star’s death, the relative increase
in publication activity by non-collaborators is large enough in magnitude to fully
offset the decline in activity by collaborators. Second, there is no discernible
evidence of an effect in the years leading up to the death, a finding that validates
ex post our identification strategy.

Nevertheless, the case for the exogeneity of death events with respect to the
course of knowledge growth and decline within a subfield is stronger for sudden
causes of deaths than for anticipated causes of death. Figure E2 in Appendix E
provides a version of Figure 2, Panel C (event study graphs for non-collaborators)
broken down by causes of death (anticipated vs. sudden). While there is more
variability in the estimated path of outcomes in the years leading up to the death
event in the anticipated case (Panel A) than in the sudden case (Panel B), it
is imprecisely estimated and non-monotonic. In both panels, however, one can
observe a slow but steady increase after the event in the rate of contributions by
non-collaborators in treated subfields, relative to control subfields. The distinc-
tion between sudden and anticipated events is explored further in section III.D.

The last three columns of Table 3 focus on funding flows from the National
Institutes of Health (NIH) rather than publication flows. More precisely, the
outcome variable in columns 4, 5, and 6 is the number of distinct NIH awards
that acknowledge a publication in the subfield in the three-year window before
the year of publication for the related article (summing the financial total of
grant amounts, as opposed to the number of grants, yields similar results). The
patterns are very similar to those obtained in the case of publication activity,

19The number of observations varies ever so slightly across columns because the conditional fixed effects
specification drops observations corresponding to subfields for which there is no variation in activity over
the entire observation period. This is true as well for the results reported in Tables 4 through 7.

20In these specifications, the AFTER DEATH term which is common to treated and control subfields
is also interacted with a complete series of lags and leads relative to the year of death or counterfactual
death.
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both in terms of magnitudes and in terms of statistical significance.

C. Subfield growth patterns

In the remainder of the manuscript, we seek to characterize the kind of contribu-
tion, and the type of investigators that give rise to the novel empirical regularity
we uncovered: that of relative growth for subfields following the death of their
superstar anchor, a phenomenon entirely accounted for by research activity un-
dertaken by scientists who never collaborated with the star while alive. As a
consequence, all the results below pertain to contributions by non-collaborators;
any article with even one author who collaborated with the star is excluded from
the count of articles that constitute the dependent variable.

The impact and direction of new research. What characterizes the addi-
tional contributions that together lead to increased activity in a subfield after a
star has passed on? Are these in fact important contributions to the subfield? Do
they continue to focus on mainstream topics within the subfield, or should they
be understood as taking the intellectual domain in a novel direction? Tables 4
and 5 explore these issues.

In Table 4, we parse every related article in the subfields to assign them into
one of six mutually exclusive bins, based on their vintage-specific long-run cita-
tion impact: articles that fall in the bottom quartile of the citation distribution;
in the second quartile; in the third quartile; articles that fall above the 75th per-
centile, but below the 95th percentile; articles that fall above the 95th percentile,
but below the 99th percentile; articles that fall above the 99th percentile of the
citation distribution.21 Each column in Table 4 (with the exception of the first
which simply replicates the effect for all papers, regardless of impact, that was
previously displayed in Table 3, column 3) reports the corresponding estimates.
A startling result is that the magnitude of the treatment effect increases sharply
and monotonically as we focus on the rate of contributions with higher impact.
In contrast, the number of lower-impact articles contributed by non-collaborators
contracts slightly, though the effect is not precisely estimated.22

21A vintage is comprised of all the articles published in a given year. When we are referring to the
vintage-specific, article-level distribution of citations, the relevant universe to compute quantiles is not
limited to the articles that constitute the subfields in our data. Rather, the relevant universe includes
the entire set of 17,312,059 articles that can be cross-linked between PubMed and the Web of Science.
As a result, there is no reason to suspect that individual stars, or even our entire set of stars, could ever
alter the shape of these distributions. For example, the article by Sopko et al. highlighted on Figure C5
(in Appendix C) received 40 citations from other articles in PubMed by 2015. This puts this article
above the 79th percentile of the citation distribution for articles published in 2002.

22Table E3 and Figure E3 in Appendix E break down these results further by examining separately
the growth of subfields by cause of death (anticipated vs. sudden). As mentioned earlier, the case for
exogeneity is stronger for sudden death, since when the death is anticipated, it would be theoretically
possible for the star to engage in “intellectual estate planning,” whereby particular scientists (presumably
close collaborators) are anointed as representing the next generation of leaders in the subfield. Our core
results continue to hold when analyzed separately by cause of death. However, we gain statistical power
from pooling these observations, and some empirical patterns would be estimated less precisely if we
chose to focus solely on observations corresponding to subfields for which the star died suddenly and
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Table 5 parses the related articles in each subfield to ascertain whether contribu-
tions by non-collaborators constitute a genuine change in intellectual direction.
Panel A distinguishes between contributions that are proximate in intellectual
space to the source article from those that are more distant (though still part
of the subfield as construed by PMRA). Because we have at our disposal both
a cardinal and an ordinal measure of intellectual proximity, we present two sets
of estimates. In both cases, the magnitude of the treatment effect pertaining
to PMRA-proximate publication activity is larger, and more precisely estimated
than the magnitude corresponding to PMRA-distant publication activity (relative
to the same patterns for the control group of subfields). We can certainly rule out
the conjecture that non-collaborators enter the field from the periphery. Rather,
their contributions appear to tackle mainstream topics within the subfield.

Panel B sheds light on the intellectual direction of the field, by examining the
cited references contained in each related article. The first two columns separate
related articles in two groups: publications that cite at least some work which
belongs to the subfield identified by PMRA for the corresponding source and
publications that cite exclusively out of the PMRA subfield. Only articles in
the second group appear to experience growth in the post-death era. The next
two columns proceed similarly, except that the list of references is now parsed to
highlight the presence of articles authored by the star (Column 3), as opposed
to all other authors (Column 4). We find that subfield growth can be mostly
accounted for by articles from non-collaborators who do not build on the work of
the star.

Whereas Panel B highlighted the extent to which contributors were bringing
new sources of inspiration into the subfield, Panel C focuses on the extent to
which the treated subfields move closer to the scientific frontier in the wake of
the superstar’s passing. The first two columns do so by distinguishing between
contributions that draw on recent versus more dated references. This exercise
is repeated in Columns 3 and 4, with a focus on the vintage of the MeSH term
combinations for each article in the subfield.23 Both sets of results indicate that
these new contributions are more likely to build on science of a more recent
vintage.

Taken together, the results presented in Table 5 paint a nuanced picture of
directional change in the wake of superstar passing. The new contributions do not
represent a radical departure from the subfield’s traditional concerns (Panel A).
At the same time, the citation and MeSH evidence (Panels B and C) make it clear
that these additional contributions are more likely to draw on new-to-the-subfield
as well as new-to-the-world ideas. In short, they both rejuvenate the subfield, and
alter its angular velocity by shifting its intellectual center of gravity away from
its pre-death position.

unexpectedly.
23A two-way MeSH term combination is born in the year where an article is annotated by the keyword

pair for the first time.
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It is important to note, however, that the findings above do not imply that
the published results of entrants necessarily contradict or overturn the prevailing
scientific understanding and assumptions within a subfield. We provide indirect
evidence regarding these contributions’ disruptive impact by leveraging a measure
recently proposed by Funk and Owen-Smith (2017). Their index captures the de-
gree to which an idea consolidates or destabilizes the status quo, by measuring
whether the future ideas that build on the focal idea also rely on its acknowledged
predecessors. The results in Table E4 of Appendix E suggest that these contri-
butions do not radically disrupt the subfield. Rather, they appear to reflect the
impact of a myriad “small r,” permanent revolutions whereby new ideas come to
the fore without necessarily eclipsing prior approaches.

Outsiders vs. competitors. The next step of the analysis is to investigate the
type of scientists who publish the articles that account for subfield growth in the
wake of a star’s death. We examine the proximity in intellectual space between
non-collaborators in the subfield and the deceased superstar. One possibility is
that non-collaborators are competitors of the star, with much of their publication
activity falling into the subfield when the star was alive. Another possibility is
that they are recent entrants into the subfield—intellectual outsiders. To distin-
guish these different types of authors empirically, we create a metric of intellectual
proximity for each related author we can match to the AAMC Faculty Roster, by
computing the fraction of their publications that belongs to the star’s subfields
up to the publication year for each related article.24 The distribution of this field
overlap measure is displayed on Panel A of Figure 3. The distribution is skewed,
with a pronounced mass point at the origin: approximately 50% of the related
articles turn out to have authors with exactly zero intellectual overlap with the
star’s subfield, and another 1.24% are authored by new scientists for whom this
publication within the subfield is also their first publication overall.

We now use this metric to gauge the extent to which the post-death publication
activity by non-collaborators (relative to the control group) can be attributed to
related authors whose outsider status falls into one of twelve separate bins. This
includes one bin for new scientists, one bin for the bottom half of the overlap
distribution, one bin for every five percentiles above the median (50th to 55th

percentile, 55th to 60th percentile,. . . , 95th to 99th percentile), as well as a top
percentile bin. We then compute the corresponding measures of subfield activity
by aggregating the data up to the subfield/year level. These results are presented
graphically in Panel B of Figure 3. Each dot corresponds to the magnitude of
the treatment effect in a separate regression with the outcome variable being the
number of articles in each subfield that belong to the corresponding bin.

A striking pattern emerges. The authors driving the growth in relative publi-

24Whenever we match more than one author on a related article, we assign to that article the highest
proximity score for any of the matched authors. Appendix E, Table E9 defines overlap with respect to
all the subfields associated with a given star, rather than simply the focal subfield. This does not alter
our conclusions.
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cation activity following a star’s death are largely outsiders. They do not appear
to have been substantially active in the subfield when the star was alive. In
other words, they are predominantly new entrants into these subfields, though
not necessarily novice scientists.

D. The Nature of Entry Barriers

The evidence so far points to fields of deceased stars enjoying bursts of activity
after the death event. The influx of outsiders documented above suggests that
stars may be able to regulate entry into their field while alive. In this section, we
attempt to uncover the precise nature of barriers to entry into the subfields where
the stars were prominent prior to their untimely demise. Methodologically, we
do so by splitting the sample of fields across the median for a series of relevant
covariates. Because there is no presumption that death events are exogenous
with respect to subfield growth and decline within the strata delineated by these
covariates, it should be clear that we will only be able to document conditional
correlations, and not causal effects in what follows.25

While it is tempting to envisage conscious effort by the stars to block entry
through the explicit control of key resources, such as funding and/or editorial
goodwill (Brogaard, Engelberg, and Parsons 2014; Li 2017), this explanation ap-
pears inconsistent with the facts on the ground. In the five-year window before
death, only three of our stars (out of 452) were sitting on study sections, the fund-
ing panels that evaluate the scientific merits of NIH grant applications. Another
three were journal editors in the same time window. This handful of individuals
could not possibly drive the robust effects we have uncovered.26 If barriers to
entry are not the result of explicit control by stars, what is discouraging entry?

Goliath’s shadow. One possibility is that outsiders are simply deterred by the
prospect of challenging a luminary in the field. The existence of a towering figure
may skew the cost-benefit calculations from entry by outside scholars toward
delay or alternative activities. Table 6 examines this role of implicit barriers to
entry by focusing on the eminence of the star. Eminence is measured through the
star’s publication count, the star’s cumulative number of citations garnered up
to the year of death, and the star’s cumulative amount of NIH funding. We also
have a “local” measure of eminence: the star’s importance to the field, which is
defined as the fraction of papers in the subfield that have the star as an author.
Splitting the sample at the median of these measures reveals a consistent pattern
of results. Stars that were especially accomplished appear to be an important
deterrent to entry, with their passing creating a larger void for non-collaborators

25Instead of interacting the treatment effect with covariates, we prefer to estimate our benchmark
specifications on subsamples corresponding to below and above the median of these covariates. For
these two approaches to yield comparable results, one would need to also saturate the specification with
interaction terms between the covariates and year/field age effects. In practice, we have found that the
fixed effects Poisson models fail to converge with this full set of interactions.

26We verified that omitting these scientists from the sample hardly change the core results.
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to fill. Rather than directly thwarting the efforts of potential entrants, it appears
that the mere presence of a preeminent scholar is sufficient to dissuade intellectual
outsiders from engaging with the field.

Of course, the accomplishment of the star alone may not be the only factor
influencing entry. We next turn our attention to how the characteristics of the
field and the star’s coauthors may also modulate this relationship. Since entry is
largely confined to those fields that have lost an eminent star, the analysis that
follows limits attention to those subfields in which the most eminent among the
stars were active, as measured by our citation metric in Table 6.27

Subfield coherence. Entry into a field, even after it has lost its star, may
be deterred if the subfield appears unusually coherent to outsiders. A subfield
is likely to be perceived as intellectually coherent, when the researchers active
in it agree on the set of questions, approaches, and methodologies that propel
the field forward. Alternatively, a field might be perceived as socially coherent,
when the researchers active in it form a tightly-knit clique, often collaborating
with each other, and perhaps also reviewing each other’s manuscripts. To explore
these purported barriers to subfield entry, we develop two alternative measures
of intellectual coherence, and one measure of social coherence.

Our first index of intellectual coherence leverages PMRA to capture the extent
to which articles in the subfield pack themselves into a crowded scientific neigh-
borhood. Recall that for each article in a subfield, we have at our disposal both a
cardinal and an ordinal measure of intellectual proximity with the source article
from which all other articles in the subfield radiate. Focusing only on the set of
articles published in the subfield before the year of death, we measure intellectual
coherence as the cardinal ranking (expressed as a real number between zero and
one) for the 25th most related article in the subfield.28 According to this metric,
subfields exhibit wide variation in their degree of intellectual coherence, with a
mean and median equal to 0.60 (sd = 0.13). The second index of intellectual
coherence exploits the list of references cited in each article in the subfield before
the star’s death. In the spirit of Funk and Owen-Smith (2017), for all related
articles published in the five years prior to the star’s death, we compute the frac-
tion of references that fall within the subfield. Our contention is that subfields
that are more self-referential will tend to dissuade outsiders from entering. Once
again, we observe meaningful variation across subfields using this second index
(mean = 0.05; sd = 0.04).

Our measure of social coherence summarizes the degree of “cliquishness” within

27More precisely, Table 7 below drops from the sample subfields associated with stars who fall below
the median of cumulative citations garnered by the year of death. Results are qualitatively similar when
focusing on the most eminent stars as defined by publications or NIH funding. Table F6 in Appendix F
presents the results corresponding to the subsample of less-eminent stars.

28The choice of the twenty fifth-ranked article is arbitrary, and also convenient. After purging from
each subfield reviews, editorials, and articles appearing in journals not indexed by WoS, 95% of the
subfields contain 25 articles or more in the period that precedes the star’s death. In those rare cases
where the number of articles is less than twenty-five, we choose as our measure of coherence the cardinal
measure for the least-proximate article in the subfield.
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a subfield by computing the clustering coefficient in its coauthorship network.
The clustering coefficient is simply the proportion of closed triplets within the
network, an intuitive way to measure the propensity of scientists in the field to
choose insiders as collaborators.29

Panel A of Table 7 investigates the role of these intellectual and social barri-
ers in modulating the post-death expansion of fields. We find tentative evidence
of a role for both types of barriers, in that the magnitude of the treatment ef-
fect for coherent fields is always smaller than the magnitude for less coherent
fields, regardless of how coherence is measured. The difference between the es-
timates for more or less coherent subfields does not reach statistical significance
at conventional levels. What seems notable, however, is that the magnitudes are
consistently ordered across the three measures.

Incumbent resource control. While we noted earlier that stars do not appear
especially well positioned to directly block entry through the control of key re-
sources, it is possible that those resources can be controlled indirectly through
the influence of collaborators. If incumbent scholars within a field serve as gate-
keepers of funding and journal access, they may be able to effectively stave off
threats of entry from outsiders. The same may be implicitly true if collaborators
are the recipients of the lion’s share of funding within the field. To assess financial
gatekeeping, we use information regarding the composition of NIH funding pan-
els, to tabulate, for each star, the number of collaborators who were members of
at least one of these committees in the five years preceding the death of the star.
We would like to proceed in a similar fashion using the composition of editorial
boards, but these data are not easily available for the set of PubMed-indexed
journals and the thirty-year time period covered by our sample. As an alterna-
tive, we develop a proxy for editorial position based on the number of editorials or
comments written by every collaborator of the star.30 We then sum the number
of editorials written by coauthors in the five years before the death. Together,
the editorial and study section information allow us to distinguish between the
stars whose coauthors were in a position to channel resources towards preferred
individuals or intellectual approaches from those stars whose important coauthors
had no such power.

Panel B of Table 7 presents the evidence on the role of indirect control. The
results paint a consistent, if not always statistically significant, picture. While
subfield expansion is the rule, it appears more pronounced when stars have rela-

29The clustering coefficient is based on triplets of nodes (authors). A triplet consists of three authors
that are connected by either two (open triplet) or three (closed triplet) undirected ties. The clustering
coefficient is the number of closed triplets over the total number of triplets (both open and closed, cf.
Luce and Perry [1949]).

30We investigated the validity of this proxy as follows. In the sample of deceased superstars, every
individual with five editorials or more was an editor. In a random sample of 50 superstars with no
editorials published, only one was an editor (for a field journal). Finally, among the sixteen superstars
who wrote between one and four editorials over their career, we found two whose CV indicate they
were in fact editors for a key journal in their field. We conclude that there appears to be a meaningful
correlation between the number of editorials written and the propensity to be an editor.
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tively few collaborators in influential positions, or collectively capture a smaller
portion of the funding that supported research in the subfield. Indirect control
therefore appears to be a potential mechanism through which superstars can exert
influence on the evolution of their fields, even from beyond the grave. Coauthors,
either through their direct effort to keep the star’s intellectual flame alive or sim-
ply by their sheer (financial) dominance in the field, appear to erect barriers to
entry into those fields that prevent its rejuvenation by outsiders.

Taken together, these results suggest that outsiders are reluctant to challenge
hegemonic leadership within a field when the star is alive. They also highlight a
number of factors that may constrain entry even after she is gone. Intellectual,
social, and resource barriers all seem to play a role in impeding entry, with out-
siders only entering subfields whose topology offers a less hostile landscape for
the support and acceptance of “foreign” ideas.

E. Reallocation and Welfare

What are the implications of our results for welfare? We approach this question
with a great deal of caution, since much of the evidence presented thus far pertains
to changes in the direction, rather than the rate, of scientific progress. Making
welfare statements in this context is tantamount to valuing the importance of the
new directions in which related authors take their fields (compared to the prior
agenda inherited from the superstar), as well as ascertaining the fate of fields that
the new entrants departed, and the agenda they otherwise might have pursued
had the star remained alive. Such an exercise is fraught with peril. Below we
synthesize the results that already speak to these questions, and provide a few
additional suggestive pieces of evidence.

Our earlier evidence suggests that entrants bring different and more recent ideas
into the subfields they enter to create highly impactful output (Tables 4 and 5).
In Appendix E we further show that the subfields that experience the largest
post-death boost in activity are those in which the star was presiding over an
empire that was losing momentum in the years immediately preceding the star’s
death (Tables E5 and E8). These subfields are also those in which the star’s close
collaborators were less able to regulate entry (Table 7B).

It is important to note, however, that the additional output by entrants in
treated subfields is largely offset by commensurate declines in output by the star’s
collaborators (Table 3). Moreover, these new contributions appear to come at the
expense of the entrants’ prior agenda. In Appendix G, we examine changes in
total output at the related author level, using a difference-in-differences set-up
that parallels our analyses at the subfield level. The results in Table G1 show
that non-collaborators do not increase their overall output, measured in terms of
publications and NIH grants awarded. Since we know from our main analysis that
related authors are contributing more within the subfields of dead superstars, the
absence of changes in total output imply that this additional work is displacing
work they were doing in other subfields. Their new output replaces, at least in
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part, articles that these authors would have written in other intellectual domains
had the star remained alive.31

As a whole, these results imply that entrants are moving subfields in productive
directions relative to the period immediately preceding the passing of the star, but
without increasing scientific output in the aggregate. However, the impacts in the
final years of a star’s life are not necessarily indicative of their contributions writ
large. Indeed, the lofty accomplishments which earned them superstar status
suggest that their net contribution to society is likely positive. A longer view
would also recognize that the scientific journeymen of today may well become
the stars of tomorrow (as shown in Table E10 of Appendix E) with a career that
slowly builds to an apex of socially valuable accomplishments, that will someday
experience a similar decline (see Figure E4 in Appendix E).

F. Extensions and robustness

Appendix E presents results pertaining to extensions of the main analyses.
Appendix F provides a number of robustness checks. In the interest of space, we
only call out a subset of the analyses presented therein, but we have written these
appendices as stand-alone documents, such that the interested reader can consult
them for additional details.
Impact of research infrastructure needs. Our analysis is limited to the
life sciences. Though this area accounts for a large fraction of publicly funded,
civilian research funding in the United States, it is not necessarily representative
of all fields of science. In particular, some domains of research require access
to expensive and specialized capital equipment. When capital needs are large
and lumpy, the evolution of subfields in the wake of an eminent scientist’s death
will likely depend on the institutions that govern access to the scarce capital
equipment.

Within biomedical research, large-scale clinical trials most closely—albeit im-
perfectly—resemble the characteristics of capital-intensive scientific fields. These
require a large infrastructure of data collection, monitoring, and management,
which is why these activities are often consolidated in large cooperative groups
such as the AIDS Clinical Trials Group, the Children’s Oncology Group, or the
Framingham Heart Study. PubMed has a “publication type” field which allows
us to identify the subfields that are clinical-trial intensive (10% of the subfields)
versus those that are not (the remaining 90%). Table E6 replicates the results
of Table 3 separately for these two subsamples. Although our ability to estimate
statistically significant effects is limited by sample size, the magnitudes are very
similar.

Impact of star age and experience. As explained earlier, we do not impose

31We also estimate a dynamic version of these specifications and display the corresponding event study-
style graphs in Figure G1 (publication output) and Figure G2 (grant output). In general, it appears
from these figures that the total output of related authors neither expands nor contracts in the wake of
a star’s passing.
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a strict age cutoff for the deceased star, we merely insist that they exhibit tangi-
ble signs of research activity, such as publishing original articles, obtaining NIH
grants, and training students. Among our 452 departed superstars, the median
age at death is 61, the seventy-fifth percentile 67, and the top decile 73. How do
the core results change when the scientists who passed away at an advanced age
are excluded from the sample? As can be observed in Table E7, the subfields of
stars who passed away more prematurely are responsible for most of the effect.
The effect for the fields associated with older stars is small in magnitude and
imprecisely estimated. We chose to keep these older stars in the sample because
a larger sample affords us opportunities to explore mechanisms without losing
power to detect nuanced effects statistically.

Star level analyses. In Table F1, we probe the robustness of the core results
presented in Table 3 after rolling up the data to the level of the star scientist
(deceased or control). Recall that the treatment variable exhibits variation at the
level of the star scientist, and not at the level of a single subfield. In this robustness
check, we lump all related articles for each star together as if they belonged to
a single subfield. The results in Table F1 are quite similar to those in Table 3,
both in terms of magnitude and statistical significance. One exception is the
coefficient on the effect of entry by collaborators, which is negative as expected,
but smaller in magnitude, relative to the corresponding coefficient in Table 3. The
corresponding event-study graphs, displayed in Figure F3, also display patterns
fully consistent with those observed for our benchmark set of results. As explained
in Section II.B, we strongly prefer performing the analyses at the the subfield
level, for two reasons. First, the subfields delineated by PMRA exhibit limited
overlap (see Figure C6 in Appendix C), and as a result the within-star, between
subfield variation in publication activity can be exploited meaningfully. Second,
we can track the differential position of the star across the subfields in which she
was active. The covariates that leverage these differences help us shed light on
mechanisms, as in Tables 7, E5, and E8.

Alternate functional forms. In Table F2, we examine the sensitivity of our
benchmark set of results to the choice of alternative functional forms. In the
three columns to the left, we simply use the “raw” number of articles in the sub-
field as the outcome, and perform estimation by OLS. Of course, the estimates
are not directly interpretable in terms of elasticities. At the mean of the data,
however, the treatment effect in the third column implies that subfield entry by
non-collaborating authors expands by 0.409/3.335 = 12.26%, which is not all that
different from the 8.2% reported in Table 3. In the three columns to the right,
we report results corresponding to OLS estimation, but this time with the out-
come variables transformed using the inverse hyperbolic sine function (Burbidge,
Magee, and Robb 1988). In this case, coefficient estimates can be interpreted as
elasticities, as an approximation. They are quite similar once again to those re-
ported in Table 3, except for the effect on entry by collaborators, which is smaller
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in magnitude.

IV. Conclusion

In this paper, we leverage the applied economist’s toolkit, together with a novel
approach to delineate the boundaries of scientific fields, to explore the effect that
the passing of an eminent life scientist exerts on the dynamics of growth—or de-
cline—for the fields in which she was active while alive. We find that publications
and grants by scientists that never collaborated with the star surge within the
subfield, absent the star. Interestingly, this surge is not driven by a reshuffling
of leadership within the field, but rather by new entrants that are drawn from
outside of it. Our rich data on individual researchers and the nature of their
scholarship allows us provide a deeper understanding of this dynamic.

In particular, this increase in contributions by outsiders appears to tackle the
mainstream questions within the field but by leveraging newer ideas that arise
in other domains. This intellectual arbitrage is quite successful—the new articles
represent substantial contributions, at least as measured by long-run citation
impact. Together, these results paint a picture of scientific fields as scholarly
guilds to which elite scientists can regulate access, providing them with outsized
opportunities to shape the direction of scientific advance in that space.

We also provide evidence regarding the mechanisms that may enable the regula-
tion of entry. While stars are alive, entry appears to be effectively deterred where
the shadow they cast over the fields in which they were active looms particularly
large. After their passing, we find evidence for influence from beyond the grave,
exercised through a tightly-knit “invisible college” of collaborators (de Solla Price
and Beaver 1966; Crane 1972). The loss of an elite scientist central to the field
appears to signal to those on the outside that the cost/benefit calculations on the
avant-garde ideas they might bring to the table has changed, thus encouraging
them to engage. But this appears to occur only when the topology of the field
offers a less hostile landscape for the support and acceptance of “foreign” ideas,
for instance when the star’s network of close collaborators is insufficiently robust
to stave off threats from intellectual outsiders.

In the end, our results lend credence to Planck’s infamous quip that provides
the title for this manuscript. Yet its implications for social welfare are ambiguous.
While we can document that eminent scientists restrict the entry of new ideas and
scholars into a field, gatekeeping activities could have beneficial properties when
the field is in its inception; it might allow cumulative progress through shared
assumptions and methodologies, and the ability to control the intellectual evolu-
tion of a scientific domain might, in itself, be a prize that spurs much ex ante risk
taking. Because our empirical exercise cannot shed light on these countervailing
tendencies, we must refrain from drawing concrete policy conclusions from our
results.

All of the evidence we have presented pertains to the academic life sciences. It
is unclear how the lessons from that setting might apply to other fields inside the
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academy. In particular, when frontier research requires access to expensive and
highly-specialized capital equipment—as is sometimes the case in the physical sci-
ences—the rules governing access to that capital are likely to favor succession by
insiders. At the other end of the spectrum, more atomistic fields where scientists
generally work alone or in very small groups may evolve in a more frictionless man-
ner. Whether our findings apply to industrial research and development is also an
open question. In that setting, the choice of problem-solving approaches is guided
by market signals (however imperfectly, cf. Acemoglu [2012]), and thus likely
to differ from those selected under the more nuanced system of pecuniary and
non-pecuniary incentives that characterizes academic research (Feynman 1999;
Aghion, Dewatripont, and Stein 2008). Assessing the degree to which our results
extend to other settings, and the reasons they might differ, represents a fruitful
area for future research.
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Figure 1: Cumulative Stock of Publications at Time of Death 

  
Note: We compute the cumulative number of publications, up to the year that immediately precedes the year of 

death (or counterfactual year of death), between 3,076 treated subfields and 31,142 control subfields. 
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Figure 2 
Effect of Star Scientist Death on Subfield Growth and Decline 

 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   

Note: The dark dots in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in 
subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event 
(the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both 
the treated and control subfields to fully account for transitory trends in subfield activity around the time of the death. The 95% confidence interval (corresponding to 
robust standard errors, clustered at the level of the star scientist) around these estimates is plotted with vertical light grey lines; Panel A corresponds to a dynamic version 
of the specification in column (1) of Table 3; Panel B corresponds to a dynamic version of the specification in column (2) of Table 3; Panel C corresponds to a dynamic 
version of the specification in column (3) of Table 3. 
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Figure 3 
Characteristics of Related Authors: Competitors or Outsiders? 

 
A. Distribution of Intellectual Proximity B. Entering Authors & Field Overlap 

  
Note: Panel A displays the distribution of overlap between the past output of related authors and each star’s subfield. For each author on a related article matched 

to the AAMC Faculty Roster, we create a metric of intellectual proximity by computing the fraction of their publications that belongs to the star’s subfield. 
Slightly more than half of related articles have authors with zero overlap, i.e., this related article is their first contribution to the star’s subfield. 1.24% of 
related articles are authored by new scientists for whom this publication within the subfield is also their first publication overall. Using this information, we 
aggregate the number of related articles in a particular subfield and in a particular year, e.g., “the number of articles in the subfield in year t that have 
authors above the 95th percentile in our measure of field overlap.” In Panel B, each dot corresponds to the magnitude of the treatment effect in a separate 
regression where the dependent variable is the number of articles in each subfield authored by scientists who belong to a particular bin of intellectual 
proximity, as measured by field overlap above. 
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Table 1: Summary Statistics — Deceased Superstar Scientists (N=452) 
 Mean Median Std. Dev. Min. Max. 
Year of Birth 1930.157 1930 11.011 1899 1959 
Degree Year 1957.633 1957 11.426 1928 1986 
Year of Death 1991.128 1992 8.055 1975 2003 
Age at Death 60.971 61 9.778 34 91 
Female 0.102 0 0.303 0 1 
MD Degree 0.403 0 0.491 0 1 
PhD Degree 0.489 0 0.500 0 1 
MD/PhD Degree 0.108 0 0.311 0 1 
Sudden Death 0.409 0 0.492 0 1 
Nb. of Subfields 6.805 4 7.308 1 57 
Career Nb. of Pubs. 138.221 112 115.704 12 1,380 
Career Nb. of Citations 8,341 5,907 8,562 120 72,122 
Career NIH Funding $16,637,919 $10,899,139 $25,441,933 0 $329,968,960 
Sits on NIH Study Section 0.007 0 0.081 0 1 
Career Nb. of Editorials 0.131 0 0.996 0 17 

Note: Sample consists of 452 superstar life scientists who died while still actively engaged in research. See Appendix A for more details on 
sample construction. 

 
  



35 
 

Table 2: Summary Statistics — Control & Treated Subfields at Baseline 
 Mean Median Std. Dev. Min. Max. 
Control Subfields (N=31,142)      
Baseline Stock of Related Articles in the Field 76.995 59 64.714 0 384 
Baseline Stock of Related Articles in the Field, Non-Collaborators 68.390 51 60.222 0 381 
Baseline Stock of Related Articles in the Field, Collaborators 8.604 5 10.358 0 125 
Source Article Nb. of Authors 3.970 4 1.901 1 15 
Source Article Citations at Baseline 16.331 8 30.305 0 770 
Source Article Long-run Citations 70.427 38 116.108 1 4495 
Investigator Gender 0.067 0 0.249 0 1 
Investigator Year of Degree 1960.546 1962 10.998 1926 1991 
Death Year 1991.125 1991 7.968 1975 2003 
Age at Death 58.100 58 8.795 34 91 
Investigator Cumulative Nb. of Publications 164 131 123 1 1,109 
Investigator Cumulative NIH Funding at Baseline $18,784,517 $11,904,846 $25,160,518 0 $387,558,656 
Investigator Cumulative Nb. of Citations 12,141 8,010 12,938 9 157,581 

Treated Subfields (N=3,076)      
Baseline Stock of Related Articles in the Field 76.284 58 64.046 0 368 
Baseline Stock of Related Articles in the Field, Non-Collaborators 67.752 51 59.725 0 357 
Baseline Stock of Related Articles in the Field, Collaborators 8.532 5 9.841 0 86 
Source Article Nb. of Authors 3.987 4 1.907 1 14 
Source Article Citations at Baseline 16.694 8 36.334 0 920 
Source Article Long-run Citations 70.432 35 180.528 1 6598 
Investigator Gender 0.099 0 0.299 0 1 
Investigator Year of Degree 1960.141 1961 10.898 1928 1986 
Death Year 1991.125 1991 7.970 1975 2003 
Age at Death 58.100 58 8.796 34 91 
Investigator Cumulative Nb. of Publications 170 143 118 12 1,380 
Investigator Cumulative NIH Funding at Baseline $17,637,726 $12,049,690 $24,873,018 0 $329,968,960 
Investigator Cumulative Nb. of Citations 11,580 8,726 10,212 120 72,122 

Note: The sample consists of subfields for 452 deceased superstar life scientists and their matched control subfields. See Appendix D for details on the 
matching procedure. All time-varying covariates are measured in the year of superstar death. 
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Table 3: Effect of Superstar Death on Subfield Entry Rates 

 Publication Flows  NIH Funding Flows (Nb. of Awards) 

 All Authors Collaborators 
Only 

Non-
Collaborators 

Only 

 
All Authors Collaborators 

Only 

Non-
Collaborators 

Only 
 (1) (2) (3)  (4) (5) (6) 

After Death 0.051† -0.232** 0.082**  0.046 -0.265** 0.110** 
(0.029) (0.057) (0.029)  (0.035) (0.076) (0.033) 

Nb. of Investigators 6,260 6,124 6,260  6,215 5,678 6,202 
Nb. of Fields 34,218 33,096 34,218  33,912 29,163 33,806 
Nb. of Field-Year Obs. 1,259,176 1,217,905 1,259,176  1,049,942 902,873 1,046,678 
Log Likelihood -2,891,110 -729,521 -2,768,252  -1,350,204 -472,329 -1,223,913 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications 
in a subfield in a particular year (columns 1, 2, and 3), or the total number of NIH grants that acknowledge a publication in a subfield 
(columns 4, 5, and 6). All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death. Exponentiating the coefficients and differencing from 
one yield numbers interpretable as elasticities. For example, the estimates in column (3) imply that treated subfields see an increase in 
the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.082]-1)=8.55%. 
The number of observations varies slightly across columns because the conditional fixed effects specification drops observations 
corresponding to subfields for which there is no variation in activity over the entire observation period. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 4: Scientific Impact of Entry 
 Vintage-specific long-run citation quantile 

 All Pubs Bttm. Quartile 2nd Quartile 3rd Quartile Btw. 75th and 
95th pctl. 

Btw. 95th and 
99th pctl. 

Above 99th 
pctl. 

After Death 0.082** -0.028 0.008 0.031 0.125** 0.232** 0.320** 
(0.029) (0.036) (0.033) (0.032) (0.035) (0.049) (0.081) 

Nb. of Investigators 6,260 6,222 6,260 6,257 6,255 6,161 5,283 
Nb. of Fields 34,218 33,714 34,206 34,212 34,210 33,207 21,852 
Nb. of Field-Year Obs. 1,259,176 1,240,802 1,258,738 1,258,954 1,258,880 1,221,952 804,122 
Log Likelihood -2,768,252 -689,465 -1,125,555 -1,432,223 -1,469,096 -542,735 -156,519 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-collaborators 
in a subfield in a particular year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation distribution for the 
universe of journal articles in PubMed. All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing from one yield numbers 
interpretable as elasticities. For example, the estimates in column (1), Panel A, imply that treated subfields see an increase in the number of contributions 
by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.082]-1)=8.55%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 5: Entry and Research Direction 
Panel A Cardinal Measure  Ordinal Measure 

 
Intllct. 

Proximate 
Articles 

Intllct. 
Distant 
Articles 

 
Intllct. 

Proximate 
Articles 

Intllct. 
Distant 
Articles 

After Death 0.091** 0.028  0.117** -0.024 
(0.030) (0.035)  (0.028) (0.037) 

Nb. of Investigators 6,228 6,099  6,260 6,017 
Nb. of Fields 33,375 32,232  34,218 31,712 
Nb. of Field-Year Obs. 1,228,157 1,186,589  1,259,176 1,167,423 
Log Likelihood -1,628,374 -1,816,449  -1,893,982 -1,628,170 

Panel B In-field vs. 
Out-of-field References  Backward Citations to 

the Star’s Bibliome 

 w/ in-field 
references 

w/o in-field 
references  w/ references 

to the star 
w/o references 

to the star 

After Death -0.023 0.128**  0.078* 0.152** 
(0.041) (0.031)  (0.036) (0.034) 

Nb. of Investigators 6,195 6,260  6,247 6,259 
Nb. of Fields 32,721 34,218  34,179 34,147 
Nb. of Field-Year Obs. 1,204,315 1,259,176  1,257,747 1,256,576 
Log Likelihood -792,795 -2,510,344  -1,914,448 -1,767,571 

Panel C Vintage of Cited 
References  Vintage of 2-way MeSH 

Term Combinations 

 Young Old  Young Old 

After Death 0.071* -0.010  0.090** 0.029 
(0.035) (0.034)  (0.033) (0.036) 

Nb. of Investigators 6,260 6,260  6,258 6,260 
Nb. of Fields 34,218 34,214  34,206 34,210 
Nb. of Field-Year Obs. 1,259,176 1,259,044  1,258,732 1,258,906 
Log Likelihood -2,124,598 -1,613,457  -1,853,062 -1,784,275 

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. In Panel A, the dependent variable 
is the total number of publications by non-collaborators in a subfield in a particular year, where these 
publications can either be proximate in intellectual space to the star’s source publication, or more distant (in 
the PMRA sense). Since PMRA generates both a cardinal and an ordinal measure of intellectual proximity, we 
parse the related articles using both measures, yielding a total of four different specifications. For the cardinal 
measure, a related article is deemed proximate if its similarity score is above .58, which corresponds to the 
median of relatedness in the sample. For the ordinal measure, a related article is deemed proximate if its 
similarity rank is below 90, which also corresponds to the median of similarity in the sample. In Panel B, we 
focus on whether the content of entrants’ contributions in the subfield change after the superstar passes away. 
Each cited reference in a related article can either belong to the subfield, or fall outside of it; it can cite a 
publication of the star scientist associated with the subfield, or fail to cite any of the star’s past contributions. 
In Panel C, the dependent variable is the total number of publications by non-collaborators in a subfield in a 
particular year, where these publications can either be “fresh” (citing young references, or being annotated by 
MeSH terms of recent vintage) or stale (citing old references, or being annotated by MeSH terms of distant 
vintage). All models incorporate a full suite of year effects and subfield age effects, as well as a term common 
to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating 
the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates 
in the first column of Panel A imply that treated subfields see an increase in the number of PMRA-proximate 
contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.091]-
1)=9.53%. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01.  
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Table 6: Breakdown by Star Scientist Characteristics 

 
Publications  Citations  Funding  Importance 

to the Field 

Below 
Median 

Above 
Median  Below 

Median 
Above 
Median  Below 

Median 
Above 
Median 

 Below 
Median 

Above 
Median 

After Death 0.059 0.116*  0.036 0.125**  0.014 0.162**  0.063* 0.123** 
(0.037) (0.050)  (0.042) (0.040)  (0.040) (0.052)  (0.031) (0.045) 

Nb. of Investigators 2,901 4,836  2,792 4,619  3,048 4,287  5,019 4,493 
Nb. of Fields 17,210 17,008  17,328 16,890  15,731 15,487  16,985 17,233 
Nb. of Field-Year Obs. 632,089 627,087  636,750 622,426  578,277 570,665  625,140 634,036 
Log Likelihood -1,377,727 -1,387,650  -1,367,335 -1,396,652  -1,268,559 -1,252,952  -1,462,538 -1,257,973 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. Each pair of columns splits the sample across the median of a particular covariate for the sample of fields 
(treated and control) in the baseline year. The table examines differences in the extent to which the eminence of the star at death (respectively 
counterfactual year of death for controls) influences the rate at which non-collaborators enter the field after the star passes away. Eminence is measured 
through the star’s cumulative number of publications, the star’s cumulative number of citations garnered up to the year of death, and the star’s cumulative 
amount of NIH funding. We also have a “local” measure of eminence: the star’s importance to the field, which is defined as the proportion of articles in 
the subfield up to the year of death for which the star is an author. All models incorporate a full suite of year effects and subfield age effects, as well as 
a term common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and 
differencing from one yield numbers interpretable as elasticities. For example, the estimate in the second column implies that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.116]-1)=12.30%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 7: The Nature of Entry Barriers 
 
Panel A 
 

Subfield Coherence 

PMRA-based definition  Citation-based definition  Cliquishness 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.202** 0.067  0.161** 0.096*  0.129** 0.064 
(0.038) (0.048)  (0.053) (0.041)  (0.049) (0.052) 

Nb. of Investigators 3,353 3,203  3,422 3,157  2,865 3,561 
Nb. of Fields 9,062 7,828  8,731 8,159  8,044 8,846 
Nb. of Field-Year Obs. 334,142 288,284  321,826 300,600  296,704 325,722 
Log Likelihood -711,335 -664,170  -760,842 -631,287  -692,330 -685,682 
 
Panel B 
 

Indirect Control through Collaborators 

Editorial Channel  NIH Study Section Channel  Fraction of Subfield 
NIH Funding 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.147** 0.086†  0.134** -0.078  0.174** 0.084 
(0.056) (0.048)  (0.043) (0.095)  (0.051) (0.051) 

Nb. of Investigators 3,452 2,068  4,385 664  3,559 2,525 
Nb. of Fields 11,110 5,780  15,338 1,552  9,863 7,027 
Nb. of Field-Year Obs. 410,025 212,401  565,219 57,207  363,690 258,736 
Log Likelihood -951,705 -461,769  -1,293,997 -125,950  -840,777 -545,782 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. The sample is limited to the subfields in which the most eminent among the stars were active 
(specifically, above the median of the “cumulative citations up to the year of death” metric). Each pair of columns splits the sample across the median 
of a particular covariate for the sample of subfields (treated and control) in the baseline year. For example, the first two columns of Panel B compare 
the magnitude of the treatment effect for stars whose collaborators have written an above-median number of editorials in the five years preceding the 
superstar’s death, vs. a below-median number of editorials. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. For example, the estimates in the first column of Panel B imply that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.147]-1)=15.84%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 


