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FOR ONLINE PUBLICATION - Appendix A: Technical Appendix

This Appendix provides the technical details of our model setup and the proofs of the Propositions. We also consider

extensions of the baseline model to gauge the robustness of our characterization of the optimal benefit profile. We

finally compare the evolution of consumption smoothing gains and moral hazard in stationary and non-stationary

environments.

A.1 Setup

We closely follow the setup in Chetty [2006], but allow for heterogeneous agents and non-stationarities. Let ωi,t denote

a vector of state variables that contain all relevant information up to time t in determining an agent i’s employment

status and behavior at time t. Let Fi,t (ωi,t) denote the unconditional distribution of ωi,t given information available

at time 0. We assume that Fi,t is a smooth function and let Ω denote the maximal support of Fi,t for ∀i,∀t. In our

stylized model, the vector of state variables ωi,t includes only the asset level, time and the employment status.

In each period t, an agent decides how much to consume from her income and assets. In our stylized model, an

agent earns w − τ when employed and receives b when unemployed. The law of motion of assets in the employment

and unemployment state are respectively,

ai,t+1 = rai,t + w − τ − cei,t (1)

ai,t+1 = rai,t + bt − cui,t, (2)

but are constrained to be above ai,t+1 ≥ āi for each agent i and any time t. We denote the Lagrange multipliers on

these constraints by µei,t (ωi,t) , µ
u
i,t (ωi,t) and µai,t (ωi,t) respectively.

Let θi,t (ωi,t) denote an agent’s employment status at time t in state ωi,t. If θ = 1, the agent is employed, and

if θ = 0, the agent is unemployed. In each period t, an unemployed agent chooses a level of search effort si,t as

well. This search effort level determines the probability to leave unemployment for employment in that period. This

mapping may be agent-specific and change depending on the length of the unemployment spell.

1



Each agent i chooses a program (si, c
u
i , c

e
i ) with

si = {si,t (ωi,t)}t2f1,2,..Tg,ωi;t2Ω,θ(ωi;t)=0 ,

cui =
�
cui,t (ωi,t)

	
t2f1,2,..Tg,ωi;t2Ω,θ(ωi;t)=0

,

cei =
�
cei,t (ωi,t)

	
t2f1,2,..Tg,ωi;t2Ω,θ(ωi;t)=1

,

to solve

Vi (P ) = max ΣTt=1β
t�1

Z
{vui

�
cui,t (ωi,t) , si,t (ωi,t)

�
[1− θi,t (ωi,t)] + vei

�
cei,t (ωi,t)

�
θi,t (ωi,t)}dFi,t (ωi,t)

+ ΣTt=1β
t�1

Z
µui,t (ωi,t)

�
rai,t (ω̃i,t�1) + bt − cui,t (ωi,t)− ai,t+1 (ωi,t)

�
[1− θi,t (ωi,t)] dFi,t (ωi,t)

+ ΣTt=1β
t�1

Z
µei,t (ωi,t)

�
rai,t (ω̃i,t�1) + w − τ − cei,t (ωi,t)− ai,t+1 (ωi,t)

�
θi,t (ωi,t) dFi,t (ωi,t)

+ ΣTt=1β
t�1

Z
µai,t (ωi,t) [āi − ai,t+1 (ωi,t)] dFi,t (ωi,t) ,

where we use the short-hand notation ω̃i,t�1 to denote the vector of state variables at time t − 1 that preceded the

vector of state variables ωi,t at time t. Following Chetty [2006], we assume that lifetime utility is smooth, increasing

and strictly quasi-concave in (cui , c
e
i , si) and that the value function Vi (P ) is differentiable such that the Envelope

Theorem applies. This implies that

∂Vi (P )

∂bt
= βt�1

Z
µui,t (ωi,t) [1− θi,t (ωi,t)] dFi,t (ωi,t)

= βt�1

Z
∂vui

�
cui,t (ωi,t) , si,t (ωi,t)

�
∂cui,t

[1− θi,t (ωi,t)] dFi,t (ωi,t) .

The second equality uses the optimality of the consumption choice cui,t (ωi,t), which does not depend on the borrowing

constraint being binding or not.

In our stylized model, the agent starts unemployed and remains employed until T once she finds a job. The

agent’s exit rate out of unemployment at time t only depends on her search effort at time t. The (unconditional)

probability to be unemployed at time t+ 1 therefore simplifies to

Pr (θi,t+1 = 0) =

Z
(1− hi,t (si,t (ωi,t))) [1− θi,t (ωi,t)] dFi,t (ωi,t) .

This simplifying assumption makes that on the optimal path an agent’s unemployment consumption cui,t (ωi,t) only

varies with time t, which coincides with the number of periods she is currently unemployed. The agent’s employment

consumption cei,t (ωi,t), however, depends on both time t and the number of periods she has been unemployed.

We now turn to the policy. We can express the present value of the government’s budget as

G (P ) = ΣTt=1 [1 + r]�(t�1)

Z Z
{−bt [1− θi,t (ωi,t)] + τθi,t (ωi,t)}dFi,t (ωi,t) di,

which simplifies to (1) when r = 0.

The government solves

max

Z
Vi (P ) di+ λ

�
G (P )− Ḡ

�
,

where λ is the Lagrange multiplier on the government’s budget constraint and Ḡ is an exogenous revenue constraint.

Our characterization is based on local policy changes and thus only allows for local tests and recommendations. For

the local recommendations to translate globally, we would need the program to be strictly concave in P .1 To provide

1Chetty (2006) provides regularity conditions such that the government’s problem is strictly concave in case of
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tractable expressions of the local welfare implications we assume that the social welfare function is differentiable.

A.2 Dynamic Unemployment Policy

A.2.1 Proof of Proposition 1

The welfare impact of a change in bene�t level bt of policy P equals

∂W (P )

∂bt
=

Z
∂Vi (P )

∂bt
di+ λ

∂G (P )

∂bt
,

where, using Srt ≡ St/ [1 + r](t�1) and εrt0,t =
∂Sr
t0

∂bt

bt
Sr
t0
,

∂G (P )

∂bt
= −Srt − ΣTt0=1 (bt0 + τ)

∂Srt0

∂bt
= −Srt ×

�
1 + ΣTt0=1

Srt0 (bt0 + τ)

Srt bt
εrt0,t

�
,

which simpli�es to expression (5) for r = 0, andZ
∂Vi (P )

∂bt
di =

Z Z
βt�1 ∂v

u
i

�
cui,t (ωi,t) , si,t (ωi,t)

�
∂cui,t

[1− θi,t (ωi,t)] dFi,t (ωi,t)}di

= βt�1StE

 
∂vui

�
cui,t (ωi,t) , si,t (ωi,t)

�
∂cui,t

|t, θi,t (ωi,t) = 0

!
.

This expression simpli�es to (7) for β = 1 + r = 1. The expectation operator Eut (·) thus averages over all potential

states in which the agent is unemployed at time t. In our stylized setup (which assumes that the agent starts unem-

ployed and remains employed once she �nds a job), the agent’s unemployment consumption cui,t (ωi,t) only depends

on the length of the ongoing unemployment spell. The weight of agent i’s marginal utility in calculating the average

marginal utility among the unemployed at time t is scaled by Si,t/St.

Combining the two expressions, we �nd

∂W (P )

∂bt
= 0⇔

R ∂Vi(P )
∂bt

di− λ
λ

= ΣTt0=1

Srt0 (bt0 + τ)

Srt bt
εrt0,t.

In the same way, we �nd

∂G (P )

∂τ
=
h
ΣTt=1 (1− St) / [1 + r](t�1)

i
×

"
1 + ΣTt0=1

Srt0 (bt0 + τ)

ΣTt=1{(1− St) / [1 + r](t�1)}τ
εrt0,τ

#
,

Z
∂Vi (P )

∂τ
di = ΣTt=1β

t�1 (1− St)E

 
∂vei

�
cei,t (ωi,t)

�
∂cei,t

|t, θi,t (ωi,t) = 1

!
,

and, hence,
∂W (P )

∂τ
= 0⇔ λ�

∫ @Vi(P )
@�

di

λ
= ΣTt0=1

Srt0 (bt0 + τ)

ΣTt=1{(1− St) / [1 + r](t�1)}τ
εrt0,τ ,

which simpli�es to expression (9) for β = 1 + r = 1, with (T −D) equal to the expected time spent employed

ΣTt=1 (1− St). The expectation operator Ee (·) in (9) is over all employment states and periods t. Compared to

consumption during unemployment, employment consumption cei,t (ωi,t) depends on the unemployment history and

not just on time t. Hence, we need to calculate the average marginal utility when employed at time t for any agent i

and scale the weight in calculating the average marginal utility among the employed at time t by (1− Si,t) / (1− St).

We then average over all periods t using weights (1− St) / (T −D).

flat unemployment policies (i.e., bk = b̄).
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The n + 1 �rst-order conditions stated in the Proposition, jointly with the budget constraint, are necessary con-

sidtions for an interior, optimal policy. �

A.2.2 Robustness of Characterization

We brie
y show how the optimal tax formulae continue to apply in a model with multiple unemployment spells where

an agent i 's layo� probability l i (ei;t ) at time t depends on her e�ort on the job ei;t . We still assume that ! i;t contains

all relevant information up to time t in determining an agent i 's employment status and behavior at time t. Let

� i;t (! i;t ) still denote an agent's employment status at time t in state ! i;t . If � = 1, the agent is employed, and if

� = 0 ; the agent is unemployed.

From the consumption smoothing perspective, the agent's marginal utility when employed can now depend on the

e�ort on the job, @vei
�
ce

i;t (! i;t ) ; ei;t (! i;t )
�

=@cei;t . From the moral hazard perspective, the (unconditional) probability

to be unemployed now equals

P r (� i;t +1 = 0) =
Z

f (1 � hi (si;t (! i;t ) ; ! i;t )) [1 � � i;t (! i;t )] + l i (ei;t (! i;t )) � i;t (! i;t )gdFi;t (! i;t ) :

We introduce the indicator functions I ~t
i;t (! i;t ) which take value 1 if the length of the ongoing unemployment spell

equals ~t and 0 otherwise. Hence,

P r
�
I 1

i;t +1 = 1
�

=
Z

l i (ei;t (! i;t )) � i;t (! i;t ) dFi;t (! i;t ) ,

P r
�

I
~t
i;t +1 = 1

�
=

Z
(1 � hi (si;t (! i;t ) ; ! i;t )) I

~t � 1
i;t (! i;t ) dFi;t (! i;t ) .

The budget constraint still depends on the survival rate at each unemployment duration Sr
~t , but now potentially

spread over multiple spells. That is,

Sr
~t = � T

t =1 [1 + r ]� ( t � 1)
Z Z

I
~t
i;t (! i;t ) dFi;t (! i;t ) di:

Hence, the optimal formulae in Proposition 1 remain exactly the same (with the marginal utility of consumption

when employed depending on e�ort on the job). The policy-relevant elasticity should account for potential responses

in the layo� rate to a change in the unemployment policy. In our context, however, we �nd no signi�cant responses

in the layo� rates to changes in UI bene�ts. 2

We refer to Chetty [2006] for a detailed treatment of other extensions of the model (including private insurance

arrangements, spousal labour supply, etc.) which do not a�ect the optimal tax formulae due to envelope conditions.

This remains true when extending his analysis to a dynamic bene�t pro�le. For example, we can introduce alternative

sources of incomezi;t (x i;t ; ! i;t ) into the agent's budget constraints (1) and/or (2), with the income level depending

on the agent's choice variable x i;t , which may enter the agent's utility function when employed and/or unemployed.

As long as there are no externalities related to this alternative source of income, envelope conditions imply that the

2First, if layo� rates respond to the unemployment policy, this has implications regarding the pdf of daily wages
around the kink in our empirical setting. The presence of a kink in bene�ts should create bunching at the kink if
there is moral hazard on the job with convex costs of shirking. We show in subsection B.4 of Appendix B that we
cannot detect any bunching at the kink. Furthermore, if layo�s are responsive to UI bene�ts this should also a�ect
the pdf of daily wages when the kink in the schedule is removed. We show in subsection B.4 of Appendix B that
we cannot detect such changes in the pdf of daily wages after the removal of the kinks in the schedule. While this
evidence is far from de�nitive, it suggests that layo� rates do not seem to strongly respond to UI bene�ts in our
context.

4



welfare impact of a policy change is still captured by the same statistics.

A.2.3 Characterization with Employer Screening

We consider a reduced-form model of employer screening based on Lockwood [1991] and Lehr [2017]. The job �nding

rate rate hi;t (si;t ; St ) = � i (si;t ) � � t (St ) is determined not only by the probability that agent i �nds a vacant position

� i (si;t ), depending on her own search e�ort, but also by the probability that the matching �rm hires the agent � t (St )

where St = f Si 0;t gi 0. The hiring probability at time t depends on the relative survival rates by agents with di�erent

productivity. In a two-type version of the model ( H and L ), where an agent i 's type a�ects both her productivity � i

and the probability of �nding a vacancy � i (si;t ), the �rm's optimal hiring rate when matched with a job seeker who

has been unemployed fort periods increases in the relative survival rate of the high type at time t. In particular, if

the �rm's pro�t of hiring an agent equals � i � w, where � H > � L = 0, the �rm's optimal hiring decision equals � t = 1

if S H
t

S L
t

� H � w and 0 otherwise. As a consequence, with the more productive type leaving unemployment at a faster

rate, the �rm would not hire job seekers who have been unemployed for longer than �t where
S H

�t
S L

�t
� H = w.

In the employer screening model, an agent's search e�ort will a�ect the job �nding probability of any other

agent, positively or negatively depending on her type, but no agent internalizes this e�ect. For simplicity we focus

on job seekers' welfare and ignore the impact on �rms' pro�ts. Note that the setup can in principle also encompass

richer models with rationing (e.g., Michaillat [2012]) and employer ranking (e.g., Blanchard and Diamond [1994]),

in which job seekers' search e�ort crowd out the job �nding rate of other job seekers. This is analyzed in Landais

et al. [2010] who account for �rms' pro�ts and labor-demand behavior more generally and show how the distinction

between micro and macro elasticities becomes relevant for the characterization of the optimal (static) unemployment

policy in general equilibrium.

The impact of a policy change on the agents' welfare equals
Z

@Vi (P )
@bt

di =
Z

Si;t
@vui (cu

i;t ;s i;t )
@cui;t

di + � 1
t 0=1 [

Z
Si;t 0� i (si;t 0) @� t 0

@S t 0

@S t 0

@bt
� t 0 �

V e
i;t 0 � V u

i;t 0

�
di ]

= �S t f [1 + CSt ] + � 1
t 0=1

St 0

St
[
Z

Si;t 0

St 0

@� i (s i;t 0) � t 0

@S t 0

@S t 0

@bt
� t 0 �

V e
i;t 0 � V u

i;t 0

�
=�di ]g

� �S t

�
[1 + CSt ] + � 1

t 0=1
St 0

St
E u

t 0

�
@ht 0

@bt
! h

t 0

��
.

We can correct the moral hazard cost for this new externality so that

@W(P)
@bt

= �S t � [CSt � MH x
t ] ,

with

MH x
t � � T

t 0=1
St 0

St

�
bt 0 + �

bt
" t 0;t � E u

t 0

�
! h

t 0
@ht 0

@bt

��
;

The welfare impact of an increase in the exit rate rate is positive, ! h
i;t 0 = � t 0 �

V e
i;t 0 � V u

i;t 0

�
=� . The change in the exit

rate @ht 0=@bt (through the change in hiring) will depend on the change in the relative survival rates at time t0 in

response to the change in bene�ts at time t. This corresponds to the correction proposed by Lehr [2017] for a 
at

bene�t pro�le. A change in the unemployment policy won't change hiring, if the survival rate response of types with

di�erent productivity responds is the same. That is, " i
t 0;t = " i 0

t 0;t .

Embedding this in our framework allows to assess the impact on the bene�t pro�le as well. For the hiring

externatity to change the gradient of the moral hazard costs, we need a change in the bene�t level bt to cause a
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di�erent response in the relative survival rate (scaled by 1 =St ) depending on the timing of the change. In our stylized

two-type example the response in relative survival rate SH
�t =SL

�t at the threshold duration �t determines whether

hiring increases or decreases. Indeed, the �rm will hire job seekers with longer unemployment duration than �t if the

productive type is more responsive than the less productive type to a change in bt , i.e., " H
�t;t > " L

�t;t . The externality

response would be positive and thus causesMH x
t < MH t . In the model with heterogeneity in the returns to search,

discussed in subsection 5.2.1 and considered below, we show that" i
�t;t can be increasing in the return to search for

bene�t levels paid early in the spell, but at the same decreasing for bene�t levels paid late in the spell. Intuitively,

the increase in the returns to search reduces the survival rate into longer unemployment spells and thus reduces the

responsiveness to changes in bene�ts timed later on. Hence, with heterogeneity in the returns to search, the gradient

of the moral hazard cost could become steeper when adjusted for the hiring externality.

A.2.4 Characterization with Income Taxation

We brie
y illustrate the role of other �scal externalities beyond the one introduced by the unemployment policy. In

previous work on the Baily-Chetty formula, the only tax distortion in the economy comes from the unemployment

policy. That is, no other revenue requirement exists ( �G = 0) and the government imposes a lump sum contribution �

on the employed to balance the UI expenditures. Our model allows for taxes to fund an additional revenue requirement
�G > 0: In practice, however, general government expenditures are funded through an income tax that is levied on

both the employed and the unemployed.3 Consider the case with a proportional income tax � y in addition to a lump

sum UI contribution � u paid by employed workers. The (integrated) government budget can be rewritten as

G (P) � �G = [ T � D ] (� u + � y w) � � St (bt � � y bt ) � �G,

where

@G(P)
@bt

= � Sr
t (1 � � y ) � � T

t 0=1 (bt 0 � � y bt 0 + � u + � y w)
@Srt 0

@bt

= � Sr
t (1 � � y ) � � T

t 0=1 (bt 0 + � u )
@Srt 0

@bt
� � T

t 0=1 � y (w � bt 0)
@Srt 0

@bt

= � D r
k

�
(1 � � y ) + � T

t 0=1
Sr

t 0

Sr
t

bt 0 + � u

bt
" r

t 0;t + � T
t 0=1

Sr
t 0

Sr
t

� y (w � bt 0)
bt

" r
t 0;t

�
.

The �rst two terms capture the standard mechanical and behavioral e�ect of an increase in the bene�t level on

the expenditures and revenues related to the unemployment policy. The third term captures the �scal externality

through the income tax, accounting for the reduction in income tax revenues when increasing unemployment. For a


at pro�le, this e�ect is proportional to � y w � �b
�b and thus small when the average e�ective income tax rate is small

or the replacement rate is high. It is a standard simpli�cation in related work to ignore these �scal spillover e�ects

across di�erent government policies. Note also that from the consumption smoothing perspective, the di�erence in

marginal utilities remains su�cient.

A.2.5 Welfare Impact of Change in Tilt

Corollary 1. Whenever CS 1
MH 1

> CS 2
MH 2

, welfare can be increased by increasing the tilt b1 =b2 . A budget-balanced

increase in the tilt b1 =b2 increases welfare if and only if 1+ CS 1
1+ MH 1

> 1+ CS 2
1+ MH 2

.

3 In Sweden, UI bene�ts are fully included in individuals' taxable income to the personal income tax.
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Proof: By implicit di�erentiation, we �nd that when increasing b1 and decreasing b2 at rate

db2

db1
j1 = �

D 1 (1 + MH 1 )
D 2 (1 + MH 2 )

, (3)

the policy budget remains balanced. The welfare impact of this budget-balanced increase in the tiltb1 =b2 equals

@W(P)
@b1

�
@W(P)

@b2
db2

db1
j1 = �D 1 [1 + CS1 � 1 � MH 1 ] � �D 2 [1 + CS2 � 1 � MH 2 ]

D 1 (1 + MH 1 )
D 2 (1 + MH 2 )

= �D 1 (1 + MH 1 ) � f
1 + CS1

1 + MH 1
�

1 + CS2

1 + MH 2
g.

This proves the second part of the corollary. Consider now an increase in b1 jointly with a decrease in b2 at rate

db2

db1
j2 = �

D 1 MH 1

D 2 MH 2

The welfare impact of such increase in the tilt b1 =b2 equals

@W(P)
@b1

�
@W(P)

@b2
db2

db1
j2 = �D 1 [CS1 � MH 1 ] � �D 2 [CS2 � MH 2 ]

D 1 MH 1

D 2 MH 2

= �D 1 MH 1 �
�

CS1

MH 1
�

CS2

MH 2

�
.

Hence, whenever CS1 =MH 1 exceedsCS2 =MH 2 , such increase in the tilt b1 =b2 increases welfare and vice versa.�

A.3 Dynamic Su�cient Statistics in Stationary Environment

A.3.1 Proof of Proposition 2

We consider a 
at bene�t pro�le bt = �b < w � � for 8t in a single-type, stationary environment hi;t (�) = �h (�) for

8i; t . We also assume� (1 + r ) = 1 and T = 1 . We compare the impact of an increase in the bene�t level at time t

and at time t + 1 .

We analyze �rst the moral hazard costs. We assume that the agent is borrowing constrained and thus consumes

hand-to-mouth when unemployed and employed (cu
t = bt and ce

t = w� � ). This set up follows Hopenhayn and Nicolini

[1997]. Using notation Sr
t = (1 + r ) � ( t � 1) St , we �nd

@G(P)
@bt

= � Sr
t � � T

j =1 (bj + � )
@Srj
@bk

= � Sr
t � [1 +

b+ �
b

D r

Sr
t

" D r ;b t ].

For an increase in bt +1 , we �nd

@G(P)
@bt +1

= � Sr
t +1 � [1 +

b+ �
b

D r

Sr
t +1

" D r ;b t +1 ].

Using

D r = � T
j =1 Sr

j = 1 + D r
2 = 1 + Sr

2
~D r

2 ,

where D r
2 = � T

j =2 Sr
j and ~D r

2 =
�
� T

j =2 Sr
j =Sr

2

�
, we can write

" D r ;b t +1 =
@[1 + D r

2 ]
@bt +1

b
D r

=
@Dr

2

@bt +1

b
D r

2

D r
2

D r

=
h
" S r

2 ;b t +1 + " ~D r
2 ;b t +1

i D r
2

D r
.

Since the environment is stationary and the agent is borrowing-constrained, the agent's search behavior remains the

7



same over the unemployment spell (conditional on the continuation policy being the same). Starting from a 
at

pro�le, an increase in bt has the same impact on the continuation policy evaluated at time 1 as an increase in bt +1

has on the continuation policy evaluated at time 2, conditional on being still unemployed then. The impact of the

policy changes at time t and t + 1 on the remaining duration at time 1 and time 2 respectively is the same. Hence,

we have " ~D r
2 ;b t +1

= " D r ;b t for T = 1 . Denoting the constant exit rate for the 
at pro�le by h, we have D r = 1+ r
r + h

and D r
2 = 1� h

1+ r
1+ r
r + h , while Sr

t +1 = 1� h
1+ r Sr

t . This implies

D r
2

Sr
t +1

=
D r

Sr
t

.

Using this equality and the expression for " D r ;b t +1 , we can re-write

@G(P)
@bt +1

= � Sr
t +1 � [1 +

b+ �
b

D r

Sr
t +1

" D r ;b t +1 ]

= � Sr
t +1 � [1 +

b+ �
b

D r
2

Sr
t +1

�
" S r

2 ;b t +1 + " D r ;b t

�
]

= � Sr
t +1 � [1 +

b+ �
b

D r

Sr
t

�
" S r

2 ;b t +1 + " D r ;b t

�
].

This implies that

MH t +1 =
b+ �

b
D r

Sr
t

" S r
2 ;b t +1 +

b+ �
b

D r

Sr
t

" D r ;b t � MH t ,

since " S r
2 ;b t +1 � 0. Starting from a 
at pro�le, the moral hazard cost is thus higher for any bene�t increase that is

timed later during the spell.

We now analyze the consumption smoothing gains. In our stylized setup (which assumes that the agent starts

unemployed and remains employed once she �nds a job), an optimizing agent's unemployment consumptioncu
t (! t )

(and search e�ort st (! t )) only depends on the length of the ongoing unemployment spell. Hence, we have

Z
@Vi (P )

@bt
di = � t � 1St

@vu (cu
t ; st )

@cut
.

When the agent is borrowing constrained, the agent is hand-to-mouth cu
t = bt and the marginal utility of consumption

(and thus CSt ) remains constant for a 
at bene�t pro�le. When not borrowing constrained, an agent who is unem-

ployed at time t increases her consumption by depleting her assets to equalize the marginal utility of consumption

at time t with the expected marginal utility of consumption at t + 1 . The unemployment consumption level cu
t at

time t, the consumption level upon �nding employment ce
t +1 at time t + 1 and the consumption level when still being

unemployed cu
t +1 at time t + 1 satisfy a standard Euler condition,

@vu (cu
t ; st )

@cut
= ht (st )

@ve (ce
t +1 )

@cet +1
+ (1 � ht (st ))

@vu (cu
t +1 ; st +1 )

@cut +1

for � (1 + r ) = 1 . With separable concave preferences,@vu (c; s) =@c= @ve (c) =@c= v0 (c) ;and, bene�ts lower than

the after-tax wage b < w � � , for any given asset level, an agent has higher expected lifetime income when employed

than when unemployed. The marginal value of an increase in assets is lower when employed than when unemployed,

i.e., @Ve
t +1 =@at +1 < @Vu

t +1 =@at +1 . This implies the marginal utility of consumption is lower when employed than

when unemployed at t + 1 . Hence, by the Euler condition, v0 (cu
t +1 ) > v 0 (ce

t +1 ) implies v0 (cu
t +1 ) > v 0 (cu

t ). On the

optimal path, the marginal utility of consumption is increasing over the spell and the consumption gains are thus

always higher for bene�ts timed later during the unemployment spell.�

The stationary forces and how they a�ect the optimal bene�t pro�le are well known in the literature and

arguably robust. Our set up with the borrowing-constrained agent follows Hopenhayn and Nicolini [1997]. The

assumption that the agent is borrowing constrained is restrictive, but guarantees that search behaviour remains

the same over the unemployment spell and thus simpli�es the derivations. Note that search behaviour remains

the same in a model with savings when the agent has CARA preferences with monetary cost of search e�orts (i.e.,

8



vu (c; s) = � exp (� � [c �  (s)]) as in Spinnewijn [2015], again simplifying the derivation of the optimal bene�t pro�le.

It is also clear from the proof that relaxing the borrowing constraint would not change the conclusion regarding the

gradient of the moral hazard costs when " ~D r
2 ;b t +1

� " D r ;b t and ht +1 � ht (so that D r
2

S r
t +1

> D r

S r
t

) for any t. We analyze

this further for a speci�c search environment with non-stationary features. The result that the marginal utility of

consumption is increasing over the spell continues to hold for unconstrained job seekers when the bene�t pro�le is

not 
at but bt < w � � for all t . The assumption that the agent's preferences are separable is also more restrictive

than necessary. The proof highlights that it su�ces for the marginal value of an increase in assets to be lower when

employed than when unemployed.

A.4 Dynamic Su�cient Statistics in a Non-stationary Environment

We now specify particular functions for the search environment and introduce non-stationary features in our model.

We allow for depreciation in search e�cacy, heterogeneity in search e�cacy, and heterogeneity in assets. We study

how these forces a�ect the predicted increase in MH t and CSt throughout the unemployment spell from Proposition

2. We allow for all these non-stationary forces simultaneously in our structural model in Appendix D.

We establish three results: (i) in a model with depreciation in the return-to-search parameter (i.e., ht (si;t ) =

h0 + � t h1s�
i;t ), the moral hazard cost cost of bene�t changes that start later in the spell can be arbitrarily close to

the moral hazard cost of bene�t changes that start earlier, (ii) in a model with heterogeneity in the return-to-search

parameter (i.e., ht (si;t ) = h0 + hi
1s�

i;t ), the moral hazard costs can actually be lower for bene�t changes timed later in

the spell,, (iii) in a model with asset heterogeneity, negatively correlated with exit rates, the consumption smoothing

gains can actually be higher earlier in the spell.

A.4.1 Preliminaries

For our analysis of moral hazard costs, we assume that agents are borrowing constrained throughout the unemploy-

ment spell (i.e., unemployment consumption equals UI bene�ts), that preferences are separable in consumption and

search, u (c; s) = u (c) � s, and that the exit rate function has the following form,

h (si;t ) = h0 + h1s�
i;t for 8i; t:

For tractability, we assume that the optimal search e�ort is interior and thus the resulting exit rate is between 0 and

1.

Each individual has a value function for the employed and unemployed state shown below:

V e
i;t = u(w � � ) + �V e

i;t +1

V u
i;t = u(bt ) � si;t + �h i;t (si;t ) [V e

i;t +1 � V u
i;t +1 ] + �V u

i;t +1 ;

Since the employment state is absorbing, we haveV e
t = u ( w � � )

1� � :The optimal level of e�ort equals

si;t = ( ��h 1;i;t [V e
i;t +1 � V u

i;t +1 ])
1

1 � � :

We start from a 
at bene�t pro�le and compare a permanent bene�t rise in t = 2 (denoted by b2!1 ) and in

t = 3 (denoted by b3!1 ) respectively. Note that t = 1 is the �rst period that an agent exerts e�ort, but this is

una�ected by the bene�t level b1 . The moral hazard cost of raising bene�ts permanently in period t, starting from a


at pro�le, is given by:

MH t !1 =
@Dr

@bt !1

D r
t !1

(b+ � ) :

To save on notation we consider instead D =
P 1

t 0=1 St 0 and D t !1 =
P 1

t 0= t St 0, corresponding to D r and D r
t !1 for

r = 0, but we make sure our conclusions are robust to � ! 1.
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A.4.2 Stationary Environment

We �rst con�rm that for this speci�c search environment, in the absence of non-stationary features, the moral hazard

cost of increasing the UI bene�ts is always higher when this increase is timed later in the spell, in line with Proposition

2. This will help highlighting why non-stationary features can a�ect this result.

Consider �rst an increase in b2!1 . In this scenario, we have that V u
t = V u

t +1 = V u
2 if t � 2. As a result we have

only two value functions when unemployed:

V U
1 = u(b) � s + � (h0 + h1s� )[V e � V u

2 ] + �V u
2

V u
2 = u(b2!1 ) � s + � (h0 + h1s� )[V e � V u

2 ] + �V u
2

and one level of e�ort:

s = ( ��h 1 [V e � V u
2 ])

1
1 � � :

Hence, we can write

St = (1 � h0 � h1s� ) t � 1 ,

D =
1

h0 + h1s�

D 2!1 =
1 � h0 � h1s�

h0 + h1s�

Since we evaluate the bene�t change for a 
at pro�le, we will use the fact that before di�erentation V u
1 = V u

2 = V u .

We calculate the e�ect of the bene�t rise on the average unemployment duration, which in turn depends on the

change in e�ort, which in turn depends on the change in the value of being unemployed:

@D
@b2!1

= �
�h 1s� � 1 @s

@b2!1

(h0 + h1s� )2
,

@s
@b2!1

= �
s

1 � �
[V e � V u ]� 1 @Vu

2

@b2!1
,

@Vu
2

@b2!1
=

u0(�)
1 � � (1 � h0 � h1s� )

.

Consider now an increase inb3!1 . Note that V u
t = V u

t +1 = V U
3 if t � 3. Therefore, there are only three value

functions when unemployed:

V u
1 = u(b) � s1 + � (h0 + h1s�

1 )[V e � V u
2 ] + �V u

2

V u
2 = u(b) � s2 + � (h0 + h1s�

2 )[V e � V u
3 ] + �V u

3

(1 � � )V U
3 = u(b3!1 ) � s2 + � (h0 + h1s�

2 )[V e � V u
3 ];

and two levels of e�ort:

s1 = ( ��h 1 [V e � V u
2 ])

1
1 � �

s2 = ( ��h 1 [V e � V u
3 ])

1
1 � � :

Similar to before, we �nd

@D
@b3!1

=
� �h 1s� � 1 @s1

@b3!1
(h0 + h1s� ) � �h 1s� � 1 @s2

@b3!1
(1 � h0 � h1s� )

(h0 + h1s� )2
,

10



which is composed of the following derivatives:

@s1
@b3!1

= �
s

1 � �
[V e � V u ]� 1 @Vu

2

@b3!1

@s2
@b3!1

= �
s

1 � �
[V e � V u ]� 1 @Vu

3

@b3!1
;

which are, in turn, composed of the following derivatives:

@VU
3

@b3!1
=

u0(�)
1 � � (1 � h0 � h1s� )

,

@VU
2

@b3!1
= � � (h0 + h1s� )

@Vu
3

@b3!1
+ �

@Vu
3

@b3!1
.

Putting everything together, we �nd for b2!1 and b3!1 :

@D
@b3!1

=
@D

@b2!1
(1 � h0 � h1s� )[1 + � (h0 + h1s� )],

while

D 3!1 = D 2!1 (1 � h0 � h1s� ).

The impact of an increase in b3!1 on the time spent unemployed is smaller than the impact of an increase in b2!1 ,

since a smaller part of the unemployment policy is a�ected, as captured by the scalar [1 � h0 � h1s� ] in the both

expressions above, for the duration responses and the durations respectively. However, while the increase inb3!1

starts later, it will reduce the exit rates earlier in the spell as well, as captured by the scalar [1 + � (h0 + h1s� )] in

the expression for the duration responses. These are the forward-looking incentives identi�ed before in Shavell and

Weiss [1979]. Indeed, in line with Proposition 2, we �nd

MH 2!1

MH 3!1
=

1
1 + � (h0 + h1s� )

< 1.

This intuition generalizes for any changes bt !1 and bt +1 !1 respectively and is robust to � ! 1.

A.4.3 Depreciation in Search E�cacy

We now assume that the returns to search depreciate at a geometric rate,

ht (si;t ) = h0 + � t � 1h1s�
i;t = � t � 1hs�

i;t for � 2 [0; 1] .

To simplify the expressions below, we assume that the exit rate is zero when no search is exerted (i.e.,h0 = 0), but

the argument below continues to apply when relaxing this assumption. From the value of being unemployed at time

t and the e�ort level at time t, we can derive the following derivatives:

@Vu
t

@b�t !1
= � (1 � h� t � 1s�

t )
@Vu

t +1

@b�t !1
8 0 < t < �t

@Vu
t

@b�t !1
= u0 (b) + � (1 � h� t � 1s�

t )
@Vu

t +1

@b�t !1
8 t � �t

@st
@b�t !1

=
� st

1 � �
[V e � V u

t +1 ]� 1 @Vu
t +1

@b�t !1
;
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which can be used in order to derive an expression for the derivative of the average unemployment duration:

@D
@b�t !1

=
@

@b�t !1
[1 + (1 � hs�

1 ) + (1 � hs�
1 )(1 � h�s �

2 ) + (1 � hs�
1 )(1 � h�s �

2 )(1 � h� 2s�
3 ) + : : :]

= � �h
�
s� � 1

1
@s1

@b�t !1

D 2!1

1 � hs�
1

+ �s � � 1
2

@s2
@b�t !1

D 3!1

1 � h�s �
2

+ : : :
�

= � �h
1X

t 0=1

� t 0� 1s� � 1
t 0

D t 0+1 !1

1 � h� t 0� 1s�
t 0

@st 0

@b�t !1

=
�

1 � �
h

1X

t 0=1

� t 0� 1s�
t 0[V

e � V u
i +1 ]� 1 D t 0+1 !1

1 � h� t 0� 1s�
t 0

@Vu
t 0+1

@b�t 0!1

We then use the following feature:
@Vu

t

@b�t !1
=

@Vu
t

@b̂t !1
8 t � max[�t; t̂ ]

and

@Vu
2

@b2!1
= u0(�) + � (1 � h�s �

2 )
@VU

3

@b2!1

= u0(�) +
@VU

2

@b3!1

to re-express the ratio of duration responses as

@D
@b2!1

@D
@b3!1

=
s�

1 [V e � V u
2 ]� 1 D 2!1

1� hs �
1

@Vu
2

@b2!1
+

P 1
t 0=2 � t 0� 1s�

t 0[V e � V u
t 0+1 ]� 1 D t 0+1 !1

1� h� t 0� 1 s �
t 0

@Vu
t 0+1

@b2!1

s�
1 [V e � V u

2 ]� 1 D 2!1
1� hs �

1

@Vu
2

@b3!1
+

P 1
t 0=2 � t 0� 1s�

t 0[V e � V u
t 0+1 ]� 1 D t 0+1 !1

1� h� t 0� 1 s �
t 0

@Vu
t 0+1

@b3!1

=
u0(�) + @Vu

2
@b3!1

+ A
@Vu

2
@b3!1

+ A
;

where

A =
1X

t 0=2

� t 0� 1 s�
t 0

s�
1

V e � V u
2

V e � V U
t 0+1

D t 0+1 !1

D 2!1

1 � hs�
1

1 � h� t 0� 1s�
t 0

@Vu
t 0+1

@bj !1
for j = 2 ; 3;

capturing the response in exit rates from time 2 onwards. Hence, we can �nd an explicit expression for the ratio of

moral hazard costs,

MH 2!1

MH 3!1
=

u0(�) + @Vu
2

@b3!1
+ A

@Vu
2

@b3!1
+ A

D 3!1

D 2!1
.

Note that when we set � = 1, we return to the stationary model and �nd that MH 2!1 =MH 3!1 < 1. However, in

this non-stationary setting, the ratio depends crucially on � and can be made arbitrarily close to 1 for su�ciently low

� . That is, using D 3!1 = D 2!1 � (1 � hs�
1 ),

MH 2!1 =MH 3!1 � 1 ,

u0(�)[D 2!1 � (1 � hs�
1 )] � (1 � hs�

1 )
�

@Vu
2

@b3!1
+ A

�
,

u0(�)D 3!1 � (1 � hs�
1 )

�
� (1 � h�s �

2 )
@Vu

3

@b3!1
+ A

�
,

u0(�)D 3!1 � (1 � hs�
1 )

�
� (1 � h�s �

2 )
�

u0(�) + � (1 � h� 2s�
3 )

@VU
4

@b3!1

�
+ A

�

Iterating the substitution of @Vu
t

@b3!1
= u0(�) + � (1 � h�s �

t )
@VU

t +1
@b3!1

, we �nd

u0(�)D 3!1 �
�
� (1 � hs�

1 )(1 � h�s �
2 )u0(�) + � 2(1 � hs�

1 )(1 � h�s �
2 )(1 � h� 2s�

3 )u0(�) + : : :
�

+ (1 � hs�
1 )A:
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The bracketed term in the RHS converges to u0(�)D 3!1 for � ! 1. (In particular, when properly discounting the

survival rates to calculate the moral hazard costs, the two terms would coincide for � (1 + r ) = 1 :) This shows the

importance of the term A, determined by the exit rate responses later in the spell, in driving the wedge between

the moral hazard costs. This wedge is still positive, like in the stationary model, since A > 0. However, the wedge

disappears when A converges to 0. Now by setting � arbitrarily small we can make A arbitrarily small, since the

terms in the summation are scaled by � t 0� 1 and thus converge to 0, while all other factors can be bounded from

above. Hence, for small enough� , we have that MH 2!1 � MH 3!1 .

The intuition underlying this result is that depreciation in the returns to search reduces the responsiveness in the

exit rates later in the unemployment spell to changes in the UI bene�ts. While this force cannot reverse the relative

magnitude of the moral hazard cost, it mitigates the weight on the forward-looking incentives in driving this wedge.

We now turn to a case where the relative magnitudes can actually be reversed.

A.4.4 Heterogeneity in Search E�cacy

We now consider heterogeneity in search e�cacy, allowing for two types of agents, type y and type z. Type-y agents

have higher return to their search e�ort,

hy
1 > h z

1 .

The proportion of y-types at the start of the unemployment spell equals � .

Our approach is di�erent from the stationary case and the case with search depreciation in which we derived

an explicit expression for (@D=@bt !1 )=Dt !1 . Instead we follow the approach in the proof of Proposition 2 and

Section 5.2. We decompose the moral hazard cost of raising bene�ts in period 3 permanently into the response to

forward-looking incentives and the response in the remaining duration of unemployment, conditional on still being

unemployed in period 3,

MH 3!1 �
b

b+ �
=

D 1! 2

D 3!1
" D 1! 2 ;b3!1 + " S3 ;b3!1 + " ~D 3!1 ;b3!1

, (4)

where ~D 3!1 � D 3!1
S3

and D 1! 2 � S1 + S2 . In a single-agent model without heterogeneity, the latter response

corresponds to the moral hazard cost of an overall increase in bene�ts, " ~D 3!1 ;b3!1
= " D;b 1!1 . With heterogeneity,

the magnitude and the weights attached to the di�erent elasticities depend on the di�erent y- and z-types and their

respective survival.

We �rst show that, for a given type, all three terms in (4) are increasing in search e�cacy h1 . De�ne the following

common component amongst all three terms

B =
�

1 � �
u0(b)

(1 � � (1 � h0 � h1s� ))
b

[V e � V u ]
;

We then have

" ~D 3!1 ;b3!1
= " D;b 1!1 = B

h1s�

h0 + h1s�

" S3 ;b3!1 = B
h1s� [1 + � (1 � h0 � h1s� )]

1 � h0 � h1s�

D 1! 2

D 3!1
" D 1! 2 ;b3!1 = B

h1s� � (h0 + h1s� )
1 � h0 � h1s�

:

For tractability, we continue under the assumption that

@B
@h1

= � B �
�

1 � �
�s � (1 � � )

(1 � � (1 � h0 � h1s� )) 2
� 0;
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which follows from 1 � � � 0. We also have

@[h0 + h1s� ]
@h1

= s� + h1 �s � � 1 @s
@h1

= s� +
� (1 � � )s�

(1 � � )(1 � � (1 � h0 � h1s� ))
� s� ;

using again 1� � � 0. As a consequence, all the above terms are increasing in search e�cacyh1 .

The above elasticities are derived for a given type. This aggregrates up as follows:

" �D;b 1!1
= �

D y

�D
" D y ;b1!1 + (1 � � )

D z

�D
" D z ;b1!1 ;

" �S3 ;b3!1
= �

D y
3!1

�D 3!1
" S y

3 ;b3!1
+ (1 � � )

D z
3!1

�D 3!1
" S z

3 ;b3!1 ,

�D 1! 2

�D 3!1
" �D 1! 2 ;b3!1

= �
D y

1! 2
�D 3!1

" D y
1 !1 ;b3!1

+ (1 � � )
D z

1! 2
�D 3!1

" D z
1 !1 ;b3!1 ;

To emphasize the di�erence, we have introduced the upper-bar notation to refer to aggregates. We now wish to show

that MH 1!1 > MH 3!1 is true in the presence of su�cient heterogeneity. This is equivalent to:

" �D;b 1!1
>

�D 1! 2

�D 3!1
" �D 1! 2 ;b3!1

+ " �S3 ;b3!1
+ " �~D 3!1 ;b3!1

:

Substituting for the aggregate elasticities and re-arranging, we �nd

�
�

D y

�D
�

D y
3!1

�D 3!1

�
" D y ;b + (1 � � )

�
D z

�D
�

D z
3!1

�D 3!1

�
" D z ;b >

�
D y

1! 2
�D 3!1

" D y
1 ! 2 ;b3!1

+ (1 � � )
D z

1! 2
�D 3!1

" D z
1 ! 2 ;b3!1 + �

D y
3!1

�D 3!1
" S y

3 ;b3!1
+ (1 � � )

D z
3!1

�D 3!1
" S z

3 ;b3!1 :

Using

�
�

D y

�D
�

D y
3!1

�D 3!1

�
+ (1 � � )

�
D z

�D
�

D z
3!1

�D 3!1

�
= 0 ;

we can re-write the inequality as

�
�

D y

�D
�

D y
3!1

�D 3!1

��
" D y ;b � " D z ;b

�
>

�
D y

3!1
�D 3!1

�
D y

1! 2

D y
3!1

" D y
1 ! 2 ;b3!1

+ " S y
3 ;b3!1

�
+ (1 � � )

D z
3!1

�D 3!1

�
D z

1! 2

D z
3!1

" D z
1 ! 2 ;b3!1 + " S z

3 ;b3!1

�
:

At this point we can see the mechanism at work. The LHS of the inequality can be made larger by increasing

hy
1 relative to hz

1 . The y-type agents are more responsive to changes in bene�ts (i.e.,@"D y ;b =@hy1 > 0) and spend

relatively less time unemployed later in the spell (i.e., @(D y =Dy
3!1 )=@hy1 > 0). At the same time, we can make the

right-hand side arbitrarily small by increasing the heterogeneity. As we increase hy
1 and decreasehz

1 , the forward

looking elasticities of the y-types increase while the same elasticities decrease for thez-types. However, increasingly

little weight (converging to zero for h0 + hy
1 s�

y ! 1) gets placed on the y-types' elasticity. More weight gets placed

on the forward-looking elasticities of the z-types, but these are low and converge to zero forhz
1 ! 0.

Hence, with su�cient heterogeneity, we have that MH 1!1 > MH 3!1 .

A.4.5 Heterogeneity in Assets

Having introduced heterogeneity in exit rates, it is straightforward to reverse the prediction on the gradient of the

consumption smoothing gains as well. This requires individuals with lower marginal utility of consumption to select

into longer unemployment spells in a way that the dynamic selection o�sets the increase in marginal utility for a

given individual due to the depletion of assets. This can be obtained for example by heterogeneity in assets where
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an agent's asset holdings are negatively correlated with her exit rate. The same argument applies with heterogeneity

in preferences.

To illustrate this, consider our two-type setup where type y is borrowing constrained and has high exit rate hy -

potentially induced by the constrained consumption when unemployed - and type z who has access to assets and low

exit rate hz < h y . To obtain CSt > CS t 0, we need

�
Sy

t

St
u0 (cy

t ) + (1 � � )
Sz

t

St
u0 (cz

t ) > �
Sy

t +1

St +1
u0 �

cy
t +1

�
+ (1 � � )

Sz
t +1

St +1 ds
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and as such make the consumption smoothing gains higher for bene�ts timed earlier in the spell.

A.4.6 Relative Survival Rate Response

We use the model with heterogeneity in search e�cacy to show that the relative survival rate in a two-type model

can increase in response to bene�ts paid early in the spell and decrease in response to bene�ts paid later in the spell.

Embedding this in a model with employer screening considered in would imply that the gradient of the moral hazard

cost could become steeper when adjusted for the hiring externality.
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We now want to see if this term can be negative for high enough t, but positive for low enough t. First,
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The last inequality holds for high enough t (provided hs� > 0). Second,
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The last inequality now holds for low enough t (provided hs� is small).
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FOR ONLINE PUBLICATION - Appendix B: Additional results

and robustness of the RK design

This Appendix presents additional results on the duration responses to bene�ts and various robustness checks of the

RK design.

B.1 Additional Results: Hazard Rate Responses

To further investigate the non-stationary patterns in unemployment responses, Figure B-1 reports the RKD estimates

of the e�ect of UI bene�ts on the hazard rates out of unemployment.

Since hazard rates are quite noisy at very high frequency, we have de�ned hazard rates by periods of 5 weeks.

Blue dots represent the marginal e�ect of a change in both b1 and b2 , estimated in the regression kink design for

spells starting between 1999 and July 2001. Red dots represent the marginal e�ect of a change in b2 only, estimated

in the regression kink design for spells starting between July 2001 and July 2002. In both cases, 95% con�dence

interval around the point estimates, from robust standard errors, are displayed. The �gure conveys quite clearly a

series of interesting �ndings.

First, the graph shows that the e�ect of UI bene�ts is mostly concentrated in the �rst 10 to 15 weeks. After 15

weeks, the e�ect of UI bene�ts on the hazard rate is small and almost always insigni�cant.

Second, the graph shows that b2 (bene�ts received after 20 weeks) do have an e�ect on the hazard rate in the

�rst 10 weeks. This con�rms that unemployed individuals are forward-looking. b2 does have a somewhat negative

e�ect on contemporaneous hazard rates (after 20 weeks), but this e�ect is small and almost always insigni�cant.

The e�ect of b1 can easily be inferred as it is the di�erence, for each hazard rate, between the e�ect of b1 and b2 ,

and the e�ect of b2 only. From the �gure, we can easily see that the e�ect of b1 is almost twice as large as the e�ect

of b2 early on in the spell. Because hazard rates are very responsive tob1 in the spell, b1 is having a large e�ect on

the probability to survive into unemployment after 20 weeks. This creates a large mechanical e�ect of b1 on D 2 , the

average duration spent in the second part of the bene�t pro�le.

The total e�ect of b1 on D 2 is the sum of the mechanical e�ect on survival plus the e�ect of b1 on hazard

rates after 20 weeks. Interestingly, the �gure shows that the latter e�ect is positive (though small) for some hazard

rates after 20 weeks. This is an indication of some (positive) dynamic selection going on: individuals who remain

unemployed due to higher b1 have a slightly higher hazard rate later in the spell. Yet, this dynamic selection e�ect

is not large enough to undo the large mechanical e�ect that a much larger fraction of individuals survive into the

second part of the bene�t pro�le.

The �gure therefore provides some intuition for why b1 has a MH cost that is somewhat larger than b2 . b1

increases D 1 more than b2 because it strongly a�ects hazard rates early in the spell. This in turn has a large

mechanical e�ect on D 2 since more individuals survive into the second part of the bene�t pro�le. The e�ects of b1

(positive) and b2 (negative) on hazard rates after 20 weeks are too small and insigni�cant to undo, in the MH costs

estimates, the e�ects on hazard rates early in the spell.
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Figure B-1: RKD estimates on hazard rates at the SEK725 kink

Notes: The �gure reports the RKD estimates of the e�ect of UI bene�ts on the hazard rates out of unemployment.
Empirical hazard rates are the observed fraction of individuals exiting unemployment in period t conditional on
surviving until the start of period t, and are de�ned by periods of 5 weeks. Blue dots represent the marginal e�ect
of a change in both b1 and b2 , estimated in the regression kink design for spells starting between 1999 and July
2001. Red dots represent the marginal e�ect of a change in b2 only, estimated in the regression kink design for spells
starting between July 2001 and July 2002. All estimates are from linear speci�cations using the changes in the UI
schedule at the 725SEK kink with a 90SEK bandwidth. 95% con�dence intervals around the point estimates, from
robust standard errors, are displayed.
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B.2 RK design for D1 and D2

To assess the validity of the RK design for unemployment duration D 1 spent on the �rst part of bene�t pro�le and

unemployment duration D 2 spent in the second part of the bene�t pro�le, Figure B-2 below displays the raw data,

replicating for D 1 and D 2 what Figure 2 was doing for total unemployment duration D . The graphs provide graphical

evidence of a change in slope in the relationship between bothD 1 and D 2 and previous daily wage in response to

the kink in UI bene�ts. The change in slope is larger for spells starting before July 2001, when both b1 and b2 are

capped at the 725SEK threshold. The magnitude of the change in slope decreases for spells starting between July

2001 and July 2002 when only b2 is capped at the 725SEK threshold. Formal estimates of the change in slope using

linear speci�cations of the form of equation (16) are displayed in Table 2. The red lines display predicted values of

the regressions in the linear case.

B.3 Year by year RKD estimates

Figure B-3 plots the year-by-year evolution of the estimates of the change in slope in the relationship between total

unemployment duration D and pre-unemployment daily wages from 1999 to 2007. The �gure provides clear evidence

that our estimated responses are indeed due to the policy changes, and not due to time trends in the distribution of

durations around the kink.
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Figure B-2: RK design at the SEK725 threshold for D1 and D2

1999-2000
A. Outcome: D 1 B. Outcome: D 2

2001
C. Outcome: D 1 D. Outcome: D 2

Notes: The Figure plots average unemployment duration D 1 spent on the �rst part of bene�t pro�le and average
unemployment duration D 2 spent on the second part of the bene�t pro�le, in bins of previous daily wage for the two
periods of interest. Sample is restricted to unemployed individuals with no earnings who report being searching for
full-time employment. The graphs provide graphical evidence of a change in slope in the relationship between both
D 1 and D 2 and previous daily wage in response to the kink in UI bene�ts. The change in slope is larger for spells
starting before July 2001, when both b1 and b2 are capped at the 725SEK threshold. The magnitude of the change in
slope decreases for spells starting between July 2001 and July 2002 when onlyb2 is capped at the 725SEK threshold.
Formal estimates of the change in slope using linear speci�cations of the form of equation (16) are displayed in Table
2. The red lines display predicted values of the regressions in the linear case.
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Figure B-3: RKD estimates on unemployment duration D at the SEK725 kink by year
of entry

Notes: The �gure reports the RKD estimates of the e�ect of UI bene�ts on total duration of unemployment by year

of entry into unemployment, at the 725SEK kink. Entry into unemployment in Year N is de�ned as starting a spell

between of July 1st of Year N and July 1st of Year N + 1. Spells starting before 2001 are therefore subject to a

kink in both b1 and b2 . Spells starting in 2001 are subject to a kink in b2 only. Spells starting in 2002 and after

do not face any kink in the schedule and represent a placebo. All estimates are from linear speci�cations using the

changes in the UI schedule at the 725SEK kink with a 90SEK bandwidth. 95% con�dence intervals around the point

estimates, from robust standard errors, are displayed. The �gure provides clear evidence that estimated responses

in the RK design are indeed due to the policy changes, and not due to time trends in the distribution of durations

around the kink.
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B.4 Additional robustness analysis of the RK design

This subsection presents various additional robustness checks of the RK design. We start by restating the two

fundamental identifying assumptions of the RK design, and then propose various tests to assess their potential

validity, by looking for clear violations of these assumptions.

We consider the general model:

Y = y(b1 ; b2 ; w; � );

We are interested in identifying the marginal e�ect of bene�ts bk ; k = 1 ; 2 on the duration outcome Y , � k = @Y
@bk

. bk

is a deterministic, continuous function of the wage w, kinked at w = �wk . Identi�cation of � k in the RK design relies

on two assumptions:

Assumption 1: the direct marginal e�ect of the assignment variable w on Y is assumed to be smooth around the

kink point �wk . This means that @y( b1 ;b2 ;w;� )
@w is assumed to be continuous in the neighborhood of the kink point.

Assumption 2: the distribution of unobserved heterogeneity � is assumed to be evolving smoothly around the kink

point. This means that the conditional density ( f w j � (�)) and its partial derivative with respect to w, (@fw j � (�)=@w)

are assumed to be continuous in the neighbourhood of the kink point.

These identifying assumptions are, by de�nition, untestable. Yet, we can use the various \experiment arms" of

our quasi-experimental setting as well as sensitivity analysis to try to detect clear violations of these assumptions

and to provide some sense of the potential robustness of these identifying assumptions and the validity of our RK

design.

Testing for clear violations of Assumption 2: manipulation The most obvious violation of the assumption

of smooth distribution of heterogeneity at the kink arises if individuals are able to locate their daily wage strategically

around the kink point. A few tests can help assess the robustness of this assumption.

First, Figure B-4 plots the density of the daily wage and shows graphically the smoothness of the distribution of

the assignment variable at the kink point in the UI schedules. The graph shows the probability density function of

the daily wage around the 725SEK threshold and displays two formal tests. The �rst is a standard McCrary test of

the discontinuity of the pdf of the assignment variable. We report the di�erence in height of the pdf at the threshold.

The second is a test for the continuity of the �rst derivative of the p.d.f. We report the coe�cient estimate of the

change in slope of the pdf in a regression of the number of individuals in each bin on polynomials of the assignment

variable interacted with a dummy for being above the threshold. Both tests suggest smoothness of the assignment

variable around the threshold

The continuity in the pdf of the assignment variable indicates that there is no bunching at the kink point. Such

bunching would have constituted proof of the ability of individuals to manipulate their location on the UI schedule,

which would have been a clear violation of Assumption 2. Absence of bunching at the kink is not a su�cient condition

to rule out that individuals respond to the kinked schedule in their earnings decision, which would question the validity

of Assumption 2. The absence of bunching could be driven by optimization frictions which attenuate the ability to

bunch at the kink, or by the fact that the compensated elasticity of daily wage with respect to marginal tax rates

is small. Even if the compensated elasticity of the daily wage is small, income e�ects could still be large, and would

a�ect earnings decisions as we move further away from the kink. This would then be picked up by variations in the

slope of the pdf at the kink. The fact that we do not detect any change in the �rst derivative of the pdf of daily wage

at the kink point, as reported in Figure B-4, is reassuring.

Interestingly, because the kinks in the schedule of b1 and b2 are removed in July 2001 and July 2002, we can

actually directly estimate whether the distribution of daily wages reacts to the removal of the kink and therefore

get a direct test of whether the pdf of the assignment variable is a�ected by the presence of the kink. In Table B-1

below, we report the results of a di�erence-in-di�erence model where we look at the evolution of log wages above and

below the kink, before July 2001 (when both kinks were in place) and after July 2001 (when one kink is removed).
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The wages of individuals who had optimally chosen their daily wages at or above the kink, will be a�ected by the

removal of the kink. To the contrary, individuals who had optimally chosen daily wages below the kink should not be

a�ected by the removal of the kink. If individuals' daily wages respond to the kinked UI schedule, we therefore expect

a di�erential change in the average log wages above the kink after July 2001 relative to log wages below the kink.

Estimates, reported in Table B-1 indicate that the removal of the kinks did not signi�cantly a�ect the distribution

of daily wages above and below the kink. There is no di�erential change in the daily wage below and above the kink

after July 2001. This in turn suggests that the presence of kinks in the UI schedule does not signi�cantly a�ect the

distribution of daily wages around the kink.

Testing for clear violations of Assumption 2: observable heterogeneity To further investigate the evolution

of the distribution of heterogeneity at the kink, the panels in Figure B-5 show how the mean values of di�erent

covariates (age, fraction of men, highly educated and foreigners) evolve with the daily wage around the kink. We

do not �nd any non-linearity around the kink. This is also reassuring, as non-smoothness in the distribution of

observable heterogeneity would have cast doubt on the validity of the assumption of smoothness in the distribution

of unobservable heterogeneity around the kink.

Testing for underlying non-linearities: Bandwidth size The panels in Figure B-6 report our RKD estimates

for di�erent bandwidth sizes. For all periods we consider, the estimates remain stable for bandwidths above h =

60SEK.

Testing for underlying non-linearities: Permutation tests Ganong and Jaeger [2014] suggest that it can be

helpful to assess whether the true coe�cient estimate is larger than those at \placebo" kinks placed away from the

true kink. The idea behind their permutation test is that, if the counter-factual relationship between the assignment

variable and the outcome (i.e., in the absence of the kink in the budget set) is non-linear, then the curvature in this

relationship will result in many of the placebo estimates being large and statistically signi�cant. In Table B-2, we

report 95% con�dence interval based on this permutation procedure and compare them to bootstrapped standard

errors and robust standard errors.

Testing for underlying non-linearities: Non-parametric detection of kink point Figure B-10 shows the

R-squared when we run the RKD regression in (16) for \placebo" kinks placed in 10SEK increments from the true

location of the threshold. This procedure, proposed in Landais [2015], and inspired from the time series literature

on detection of trend breaks, enables to non-parametrically detect where a true kink is most likely to be located in

the data, by looking at the placebo kink where the R-squared is maximized. The �gure shows that the R-squared is

maximized at the location of the actual kink point, again supporting the evidence that there is in fact a change in

slope that occurs at the actual kink point. In both panels A and B, the preferred location of the kink is extremely

close to the true kink and the relationship between the placebo kink location and R-squared of the model exhibits

a clear concave shape. In panel C, reassuringly, when there is no true kink at 725SEK, this relationship is perfectly


at.

Polynomial order Table B-3 shows estimates of the change in slope at the kink for linear, quadratic and cubic

speci�cations, assessing the model �t for these di�erent speci�cations.

For the 1999-2000 period, the estimates are very similar across polynomial orders. For the 2001 period, estimates

vary across polynomial orders, and estimates from the quadratic model are larger in magnitude than estimates using a

linear speci�cation. Yet, model �t analysis suggests that linear estimates should be preferred. The linear speci�cation

is having similar root mean squared errors (RMSE) and minimizes the Aikake information criterion (AIC). Note also

that, although larger, the point estimates on the quadratic speci�cation are very imprecisely estimated, so that we

cannot actually reject that they are equal to the estimates from the linear model.

We also plot below in Figure B-8 the prediction from the linear and quadratic speci�cations on top of the raw

data to see how these models �t the data. For the period 1999-2000, panel A shows that both the quadratic and the
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linear model �t the data equally well and deliver extremely similar results for the change in slope at the kink. For

the period 2001, the quadratic model delivers a larger change in slope at the kink compared to the linear �t. But

this is driven by a higher curvature so that the linear model overall does deliver a better �t of the data, as indicated

by the root squared mean error and the AIC reported on the graph.

Right-censoring When the schedule of bene�ts changes, individuals with ongoing spells are transferred to the

new schedule. To control for this, two solutions can be envisaged. First, one may get rid of observations who have

an ongoing spell at the moment the schedule changes. An alternative solution is to treat the duration of these

observations as censored at the moment when these individuals transfer the new schedule. One can then estimate a

Tobit model on the right-censored data. In Figure B-9 below, we report the estimates for the estimated change in

slope in D 1 and D 2 for censored and uncensored models, as a function of the RKD bandwidth. The Figure shows that

censored and uncensored models deliver identical results, and that the point estimates of the two models are never

statistically signi�cantly di�erent. The uncensored model proves a little less precise though, as we end up throwing

away some observations. As a consequence, we have decided to focus on the estimates from these censored models

for our baseline results.
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Figure B-4: Robustness of the RK design: p.d.f of daily wage

Notes: The �gure tests graphically the smoothness of the distribution of the assignment variable at the kink point
in the UI schedules to assess the validity of the local random assignment assumption underlying the RK design. The
Panel shows the probability density function of the daily wage around the 725SEK threshold. We also display two
formal tests of the identifying assumptions of the RKD. The �rst is a standard McCrary test of the discontinuity of
the p.d.f of the assignment variable. We report the di�erence in height of the p.d.f at the threshold. The second is a
test for the continuity of the �rst derivative of the p.d.f. We report the coe�cient estimate of the change in slope of
the p.d.f in a regression of the number of individuals in each bin on polynomials of the assignment variable interacted
with a dummy for being above the threshold. Both tests suggest smoothness of the assignment variable around the
threshold, in support of the identifying assumptions of the RK design.
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Figure B-5: Robustness of the RK design: Covariates

A. Age B. Gender

C. Fraction with Higher Education D. Fraction Foreigners

Notes: The �gure tests the validity of the smoothness assumptions of the RK design. Each panel shows the mean
values of a di�erent covariate in bins of the assignment variable around the 725SEK threshold. The red lines display
predicted values of polynomial regressions of the form of equation (16) in order to detect potential non-linearity
around the threshold. The sample is restricted to all spells starting before July 2002, when kinks in the UI schedule
are active at the 725SEK threshold. The graphs show evidence of smoothness in the evolution of all covariates at the
kink, in support of the RKD identi�cation assumptions.
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Figure B-6: RKD estimates as a function of bandwidth size

A. 1999 - 2000

B. 2001
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Figure B-7: RKD estimates as a function of bandwidth size (continued)

A. 2002-2005

Notes: The �gure reports estimates of the change in slope with 95% robust con�dence interval in the relationship
between unemployment duration and daily wage at the 725SEK threshold using linear regressions of the form of
equation (16) as a function of bandwidth size h. These estimates are reported for three periods of interest: 1999-2000
(i.e., spells starting before July 2001), 2001 (i.e., spells starting after July 2001 and before July 2002) and 2002-
(i.e., spells starting after July 2002). Unemployment duration is de�ned as the number of weeks between registration
at the PES and exiting the PES or �nding any employment (part-time or full-time employment, entering a PES
program with subsidized work or training, etc.). Unemployment duration is capped at two years. Sample is restricted
to unemployed individuals with no earnings who report being searching for full-time employment.
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Figure B-8: Unemployment duration as a function of daily wage around the 725SEK
kink, and linear and quadratic model fits

A. 1999-2000

B. 2001

Notes: The �gure plots average unemployment duration in bins of previous daily wage for spells starting before July
2001 (panel A) and for spells starting between July 2001 and July 2002 (panel B). On top of the raw data, the �gure
also displays predictions from linear and quadratic regressions of the form of equation (16) with a bandwidth size
h = 90SEK. To further assess model �t, we report for each speci�cation the root mean squared error (RMSE) as well
as the Aikake information criterion (AIC).
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Figure B-9: RKD estimates of the change in slope at the SEK725 kink for OLS model
and for the censored regression model

1999-2000
A. Outcome: D 1 B. Outcome: D 2

2001
C. Outcome: D 1 D. Outcome: D 2

Notes: The �gure reports estimates of the change in slope with 95% robust con�dence interval in the relationship
between unemployment duration and daily wage at the 725SEK threshold using linear regressions of the form of
equation (16) as a function of bandwidth size h. When the schedule of bene�ts changes, individuals who have
ongoing spells are transferred to the new schedule. The Figure compares results for two di�erent solutions to account
for this. First, one may estimate OLS regressions on a sample where observations who have an ongoing spell at the
moment the schedule changes are thrown out (non-censored model). An alternative solution is to treat the duration
of these observations as censored at the point when these individuals get in the new schedule. One can then estimate
a Tobit model on the right-censored data (censored model). The Figure compares estimates from these two solutions.
These estimates are reported for two periods of interest: 1999-2000 (i.e., spells starting before July 2001) and 2001
(i.e., spells starting after July 2001 and before July 2002).
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