Financial Technology Adoption: Network Externalities of Cashless Payments in Mexico

Sean Higgins Northwestern University

New financial technologies are rapidly changing the way that households shop, save, borrow, and make other financial decisions

New financial technologies are rapidly changing the way that households shop, save, borrow, and make other financial decisions

Payment technologies can benefit both sides of the market

- Consumers benefit from lower transaction costs
 - Costs of traveling to a bank (Bachas, Gertler, Higgins, Seira 2018)
 - Crime risks of carrying cash (Economides and Jeziorski 2017)
- Retail firms
 - Reduce risk of cash theft (Rogoff 2014)
 - Attract consumers who prefer these payment technologies

Two-sided markets generate indirect network externalities

- Can lead to multiple adoption equilibria
- Moving to the Pareto-dominating equilibrium requires coordination (Katz and Shapiro 1986; Gowrisankaran and Stavins 2004)

Two-sided markets generate indirect network externalities

- Can lead to multiple adoption equilibria
- Moving to the Pareto-dominating equilibrium requires coordination (Katz and Shapiro 1986; Gowrisankaran and Stavins 2004)

Thus, coordination failures can constrain financial technology adoption

Two-sided markets generate indirect network externalities

- Can lead to multiple adoption equilibria
- Moving to the Pareto-dominating equilibrium requires coordination (Katz and Shapiro 1986; Gowrisankaran and Stavins 2004)

Thus, coordination failures can constrain financial technology adoption

And spillovers of financial technology adoption might be large

• Most research focuses on direct effects for households who adopt (Dupas and Robinson 2013; Callen et al 2019; Breza et al 2020)

This paper

Research question: Do coordination failures constrain financial technology adoption?

This paper

Research question: Do coordination failures constrain financial technology adoption?

Exploit natural experiment that shocked financial technology adoption on one side of market

• Mexico distributed 1 million debit cards to cash transfer beneficiaries

This paper

Research question: Do coordination failures constrain financial technology adoption?

Exploit natural experiment that shocked financial technology adoption on one side of market

Mexico distributed 1 million debit cards to cash transfer beneficiaries

Combine administrative data on debit card rollout with rich collection of microdata on consumers and retail firms

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 13% of supermarket consumption to corner stores

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 13% of supermarket consumption to corner stores
- 3. Corner store sales \uparrow 6% and supermarket sales \downarrow 12%

- 1. Increased financial technology adoption by small retailers (corner stores)
 - No effect among supermarkets, which already had high adoption
- 2. Spillovers to other consumers not directly affected by shock:
 - Other consumers adopt cards (21% ↑)
 - Richer shift 13% of supermarket consumption to corner stores
- 3. Corner store sales \uparrow 6% and supermarket sales \downarrow 12%
- 4. Over half of total consumer gains are spillovers
 - Implies that indirect network externalities are large
 - Consumer gains from spillovers exceed debit card rollout costs by 37x

Higgins (Northwestern)

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)
- 3. To isolate demand-side spillovers, need shock to subset of consumers
 - Cost of adoption only reduced for cash transfer beneficiaries

- 1. Technology adoption is endogenous
 - Exploit plausibly exogenous variation in consumers' adoption of financial technology from rollout of cards by government
- 2. May need large local shock to induce response by supply side
 - Shock is large: 18 pp \uparrow in households with cards (on base of 36%)
- 3. To isolate demand-side spillovers, need shock to subset of consumers
 - Cost of adoption only reduced for cash transfer beneficiaries
- 4. Data on firm technology adoption; outcomes for firms and other consumers
 - Combine nine data sets, both administrative and survey

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method \times locality \times month
 - Provided by Prospera (cash transfer program)
 - All card transactions by cash transfer recipients who receive card
 - Provided by Bansefi (government bank administering accounts)

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method × locality × month
 Provided by Prospera (cash transfer program)
 - <u>All</u> card transactions by cash transfer recipients who receive card
 Provided by Bansefi (government bank administering accounts)
- 2. Financial technology adoption and use by retail firms
 - <u>Universe</u> of point-of-sale (POS) terminal adoptions
 - <u>Universe</u> of card transactions by <u>all</u> cardholders (4.7 billion transactions)
 - Accessed on-site at Mexico's Central Bank

Administrative data

- 1. Administrative data on debit card rollout
 - Number of beneficiaries and payment method × locality × month
 Provided by Prospera (cash transfer program)
 - <u>All</u> card transactions by cash transfer recipients who receive card
 Provided by Bansefi (government bank administering accounts)
- 2. Financial technology adoption and use by retail firms
 - Universe of point-of-sale (POS) terminal adoptions
 - <u>Universe</u> of card transactions by <u>all</u> cardholders (4.7 billion transactions)
 - Accessed on-site at Mexico's Central Bank
- 3. Consumer card adoption
 - Quarterly number of debit cards \times issuing bank \times municipality
 - Provided by National Banking and Securities Commission

Higgins (Northwestern)

- 1. Income-expenditure survey: nationally representative household sample
 - All consumption including cash
 - Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute

- 1. Income-expenditure survey: nationally representative household sample
 - <u>All</u> consumption including cash
 - Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute
- 2. Economic census: panel on sales and costs of <u>universe</u> of retailers
 - All sales including cash
 - Accessed on-site at National Statistical Institute

- 1. Income-expenditure survey: nationally representative household sample
 - <u>All</u> consumption including cash
 - Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute
- 2. Economic census: panel on sales and costs of universe of retailers
 - <u>All</u> sales including cash
 - Accessed on-site at National Statistical Institute
- 3. Quarterly labor force survey
 - Wages for 20 million worker by quarter observations

- 1. Income-expenditure survey: nationally representative household sample
 - <u>All</u> consumption including cash
 - Includes type of store at which each item purchased
 - Census tract identifiers accessed on-site at National Statistical Institute
- 2. Economic census: panel on sales and costs of universe of retailers
 - <u>All</u> sales including cash
 - Accessed on-site at National Statistical Institute
- 3. Quarterly labor force survey
 - Wages for 20 million worker by quarter observations
- 4. High-frequency price data
 - 10 million price quotes at barcode-level product \times store \times week level
 - Accessed on-site at National Statistical Institute

Higgins (Northwestern)

Context and identification

Debit cards and point-of-sale terminals over time (Mexico)

Higgins (Northwestern)

Debit cards and POS over time and space (Mexico)

Debit cards and POS over time and space (Mexico)

Natural experiment from debit card rollout

Over 2009–2012, Mexico's conditional cash transfer program Prospera distributed about 1 million debit cards

In urban localities (population > 15,000)

Pre-intervention: Urban recipients of government cash transfer program

- Receive transfers in a Bansefi bank account
- Paid every two months (\$150 average)

Intervention: Visa debit cards attached to accounts

- Can withdraw funds from any bank's ATM
- Use as debit cards at stores accepting Visa

Higgins (Northwestern)

Debit card rollout over time

Debit card rollout over time and space

Timing of debit card rollout

Some localities selected to be included in rollout

- Based on financial infrastructure
- In analysis, only include localities included in rollout

Higgins (Northwestern)

Timing of debit card rollout

Some localities selected to be included in rollout

- Based on financial infrastructure
- In analysis, only include localities included in rollout

Conditional on included in rollout, timing not randomized but:

- Government faced capacity constraints and wanted administrative outcomes in early localities to be representative
- Test whether timing of card shock correlated with levels or changes in financial infrastructure or other locality observables
 - Show

Timing of debit card rollout

Some localities selected to be included in rollout

- Based on financial infrastructure
- In analysis, only include localities included in rollout

Conditional on included in rollout, timing not randomized but:

- Government faced capacity constraints and wanted administrative outcomes in early localities to be representative

No differential change in number of beneficiaries or benefit amounts - Show

Balanced pre-trends in financial and other variables

Higgins (Northwestern)

▶ Levels ▶ Political party ▶ Beneficiaries
Prevalence of debit and credit cards before rollout

Mexican Family Life Survey 2009 (restricted to urban localities)

Prevalence of POS terminals by store type

Overall: 32% of retailers had a POS terminal prior to rollout

Costs of POS adoption

Low-adoption equilibrium requires network externalities and fixed cost of adoption

Costs of POS adoption

Low-adoption equilibrium requires network externalities and fixed cost of adoption

POS rented to retailer from bank

- Requires firm to have an account at that bank
- Non-bank e-payment companies (e.g. Square) did not enter until 2013

Low initial cost (\$23) but \$27/month if transact < \$2000/month on POS

Constraint binds for 95% of corner stores

Per-transaction cost: 1.75% for retail

Potential tax cost (frequently mentioned in focus groups)

Non-monetary costs e.g. paperwork (but not required to be formal)

1) Increased financial technology adoption by small retailers

POS adoption

Data: Universe of point-of-sale terminal "contract changes" (adoptions, cancellations, etc.), accessed at Mexico's Central Bank

- 2006-2017
- 5 million contract changes; 1.7 million adoptions
- Combine with data set on all active POS contracts in 2017 to back out initial POS in 2006
- Construct number of POS by store type by locality over time

log Number of POS_{jt} =
$$\xi_j + \delta_t + \sum_{k=-18}^{24} \phi_k D_{jt}^k + \varepsilon_{jt}$$

- Estimate separately for each major store type
 - Store type is based on merchant category code (Ganong and Noel 2018)

Corner stores increase adoption of POS

Supermarkets do not change adoption of POS

In levels Bank response Prices

Other retailers do not change adoption of POS

2) Spillovers to other consumers

Spillovers to other consumers' card adoption

Data: From Mexico's National Banking and Securities Commission

- Total debit cards by bank by municipality by quarter
- 2008Q4 (pre-rollout) to 2016Q4
- Remove cards issued by Bansefi (Prospera cards)

log Number of Debit Cards_{jt} = $\lambda_j + \delta_t + \sum_k \phi_k D_{jt}^k + \varepsilon_{jt}$

- Doesn't rule out that new cards are adopted by the same household
 - But in a post-rollout survey of beneficiaries who received cards, only 5% reported anyone in household had any bank account at another bank

Spillovers to other consumers' card adoption

log Number of Debit Cards_{jt} = $\lambda_j + \delta_t + \sum_k \phi_k D_{it}^k + \varepsilon_{jt}$

Increased consumption at corner stores

Data: Consumption module of repeated cross-section national survey

- ENIGH 2006, 2008, 2010, 2012, 2014
- Nationally representative
- For each item consumed, has store type
- Look at whether spending across store types changes after card shock

Look for heterogeneity throughout income distribution

 $\log Spending_{it}^{s} = \lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_{q} \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

• As before, restrict to treated localities

Increased consumption at corner stores

 $\log Spending_{it}^{s} = \lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_{q} \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

Increased consumption at corner stores

 $\log Spending_{it}^{s} = \lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_{q} \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

Driven partly by changing number of trips

Weekly trips^s_{it} = $\lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

3) Retail sales and profits

Retail sales and profits

Data: Mexico's Economic Census (panel)

- Revenues and costs by category
- Includes <u>all</u> sales (including cash) for universe of firms
- Caveat: only two points in time (2008 and 2013)
 - These bracket rollout; exploit variation in how long since shock
- 1 million retailers that existed in both waves, of which:
 - 354,820 are corner stores; 172,441 in card rollout localities
 - 20,879 are supermarkets; 13,782 in card rollout localities

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Log	Log	Log	Log	Log	Log	Log	asinh	Charged VAT
	Sales	Inventory	Wage	Number	Rent	Capital	Electricity	Profits	or Paid Social
		Costs	Costs	Workers	Costs		Costs		Security
Panel A: Corner stores ($N = 1$	172,441)								
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5–3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient									
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets (N =	13,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5–3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient									
Shock 1.5–4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
▶ By period ▶ Prices	▶ Wages	▶ Fired ▶ 1	ransaction f	ees ► Sur	vival ► C	onsumption	▶ Size	 Owners 	Churning

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Log	Log	Log	Log	Log	Log	Log	asinh	Charged VAT
	Sales	Inventory	Wage	Number	Rent	Capital	Electricity	Profits	or Paid Social
		Costs	Costs	Workers	Costs		Costs		Security
Panel A: Corner stores ($N = 1$	72,441)								
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5–3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient									
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets ($N = 1$	3,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5–3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient									
Shock 1.5–4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
▹ By period ▷ Prices	 Wages 	▶ Fired ▶ 1	ransaction f	ees ► Sur	vival 🕨 C	onsumption	▶ Size	 Owners 	Churning

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Log	Log	Log	Log	Log	Log	Log	asinh	Charged VAT
	Sales	Inventory Costs	Wage Costs	Number Workers	Rent Costs	Capital	Electricity	Profits	or Paid Social Security
Panel A: Corner stores (N = 172.441)									
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5–3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient									
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets ($N = 1$	13,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5–3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient									
Shock 1.5–4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
 By period Prices 	▶ Wages	▶ Fired ▶ 1	ransaction f	ees ► Sur	vival 🕨 C	onsumption	▶ Size	 Owners 	Churning

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Log	Log	Log	Log	Log	Log	Log	asinh	Charged VAT
	Sales	Inventory	Wage	Number	Rent	Capital	Electricity	Profits	or Paid Social
		Costs	Costs	Workers	Costs		Costs		Security
Panel A: Corner stores ($N = 2$	172,441)								
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5–3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient									
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets (N =	13,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5–3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient									
Shock 1.5–4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
▹ By period	▶ Wages	► Fired ►	Transaction f	ees 🕨 Sur	vival 🕨 C	onsumption	 Size 	 Owners 	▶ Churning

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(2)	(4)	(5)	(6)	(7)	(9)	(0)
		(2)	(3)	(4)	(3)	(0)	(/)	(6) aginh	(9) Charged VAT
	LOG	LOg	LOG	LOG	Log	LOg	LOG	asinn	Charged VAT
	Sales	Inventory	wage	Number	Rent	Capital	Electricity	Profits	or Paid Social
		Costs	Costs	Workers	Costs		Costs		Security
Panel A: Corner stores ($N = 1$	172,441)								
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5-3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
, ,	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient	()	()	(,	(,	(/	()	()	()	()
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets (N =	13,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5-3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
, , , , , , , , , , , , , , , , , , , ,	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient	((
Shock 1.5-4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
▹ By period	▶ Wages	▶ Fired ▶ T	ransaction f	ees ▶ Sur	vival ► C	onsumption	▶ Size	 Owners 	Churning

 $y_{it} = \gamma_i + \delta_t + \sum_k \gamma_k \mathbb{I}(\text{received cards at } k)_{j(i)} \times D_{j(i)t} + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Log	Log	Log	Log	Log	Log	Log	asinh	Charged VAT
	Sales	Inventory	Wage	Number	Rent	Capital	Electricity	Profits	or Paid Social
		Costs	Costs	Workers	Costs		Costs		Security
Panel A: Corner stores ($N = 1$	172,441)								
Shock 3–4.5 years ago	0.081**	0.059*	-0.022	0.000	-0.028	0.047	-0.029	0.212**	0.014
	(0.036)	(0.034)	(0.020)	(0.005)	(0.025)	(0.083)	(0.034)	(0.099)	(0.009)
Shock 1.5–3 years ago	0.045	0.022	-0.022	0.000	0.022	0.024	0.005	0.143	0.031**
	(0.037)	(0.035)	(0.019)	(0.004)	(0.023)	(0.089)	(0.034)	(0.104)	(0.012)
Pooled coefficient									
Shock 1.5–4.5 years ago	0.061*	0.039	-0.022	0.000	-0.002	0.035	-0.011	0.175*	0.023***
	(0.034)	(0.032)	(0.017)	(0.004)	(0.022)	(0.082)	(0.032)	(0.096)	(0.008)
Panel B: Supermarkets (N =	13,782)								
Shock 3–4.5 years ago	-0.143**	-0.155**	-0.151	-0.014	0.314	-0.064	0.180	-0.228	-0.054
	(0.063)	(0.062)	(0.316)	(0.019)	(0.300)	(0.085)	(0.254)	(2.353)	(0.082)
Shock 1.5–3 years ago	-0.119*	-0.124**	-0.346	-0.022	0.135	0.144	0.153	0.149	-0.013
	(0.062)	(0.062)	(0.348)	(0.019)	(0.256)	(0.116)	(0.259)	(2.341)	(0.081)
Pooled coefficient									
Shock 1.5–4.5 years ago	-0.131**	-0.140**	-0.246	-0.018	0.227	0.037	0.167	-0.045	-0.034
	(0.058)	(0.057)	(0.308)	(0.019)	(0.242)	(0.086)	(0.253)	(2.326)	(0.080)
Firm and time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
▶ By period ▶ Prices	▶ Wages	▶ Fired ▶ 1	ransaction f	ees ► Sur	vival 🕨 C	onsumption	▶ Size	 Owners 	 Churning

4) Quantifying the indirect network externalities

Quantifying the indirect network externalities

Goal: quantify what proportion of total consumer gains are spillovers to other consumers

- To do so, estimate consumer gains for three types of consumers
 - 1. Prospera beneficiaries who receive cards
 - 2. Existing cardholders
 - 3. New adopters

Estimate a demand model that combines features of

- Atkin, Faber, Gonzalez-Navarro (2018)
- Björnerstedt & Verboven (2016)
- Einav et al. (2017)

For each shopping trip, consumer makes discrete-continuous choice

For each shopping trip, consumer makes discrete-continuous choice

Discrete choice over which store

For each shopping trip, consumer makes discrete-continuous choice

Discrete choice over which store

Continuous choice over goods at store

- Cobb-Douglas preferences over goods
- · Preferences for store characteristics enter utility

$$u_{ist} = \left(\prod_{g} \mathbf{x}_{igst}^{\phi_{a(i)gst}}\right)^{\alpha_{k(i)}} \cdot \exp\left(\theta_{k(i)} \mathsf{POS}_{ist} + \xi_{a(i)k(i)st} + \varepsilon_{ist}\right)$$

for consumer *i* of type *k* in census tract *a* at store type *s* at time *t*; *g* indexes goods

Plug in Marshallian demand $x_{igst} = \phi_{a(i)gst}(y_{it}/p_{a(i)gst})$

Integrate over ε_{ist} assuming extreme value 1 and integrate over POS_{ist}

Subtract off outside option s = 0 (open air markets)

Leads to equation for difference in log expenditure shares (at census tract \times consumer type \times store type \times time):

 $\log \phi_{akst} - \log \phi_{ak0t} = -\alpha_k (\log P_{ast} - \log P_{a0t}) + \theta_k \overline{POS}_{z(a)st} + \eta_{j(a)ks} + \delta_{kst} + \nu_{akst}$

where $\log P_{ast} = \sum_{g} \phi_{agst} \log p_{agst}$ (Stone price index)

 $\log \phi_{akst} - \log \phi_{ak0t} = -\alpha_k (\log P_{ast} - \log P_{a0t}) + \theta_k \overline{POS}_{z(a)st} + \eta_{j(a)ks} + \delta_{kst} + \nu_{akst}$

Estimate with three consumer groups k

- Prospera beneficiaries
- Existing credit card holders
- Others (includes existing debit card holders and new adopters)

Endogeneity of demand

- Hausman instrument for prices
- Debit card shock as instrument for POS adoption

 $-\theta_k/\alpha_k$ is price-equivalent value of no stores with POS \rightarrow all stores with POS

 $-(\theta_k/\alpha_k)\Delta POS_{ks}$ is value to consumers of supply-side response to shock

Dependent variable: difference in log expenditure shares								
	Log prices	Stores	Share spent					
	$(-\alpha_k)$	with POS (θ_k)	at corner					
Prospera beneficiaries	-3.33*	0.24	0.46					
	(1.92)	(0.31)						
Credit card holders	-2.02	0.57**	0.28					
	(1.29)	(0.22)						
Others	-2.92**	0.55***	0.37					
	(1.26)	(0.21)						
First-stage joint F-test	4	6.56						
Number of observations	21	,775						
Locality \times consumer type \times store type FE	Ň	Yes						
Store type \times consumer type \times time FE	v	Yes						

Beneficiaries: 1.9% \uparrow consumer surplus on average

Existing cardholders: $0.5\% \uparrow$ consumer surplus

New card adopters: depends on cost of adoption

- Bounds: 0−0.4% ↑ consumer surplus
- 52–55% of total $\triangle CS$ is spillovers to non-beneficiaries
 - Intuition:
 - Twice as many existing cardholders as beneficiaries
 - Existing cardholders richer, and absolute spending enters CS formula

Cost-benefit

Cost of producing debit cards: \$2.18 per card

Aggregate cost of card rollout = \$2.3 million

Aggregate value of consumer gains only from spillovers is 37 times as large

Conclusion

Coordination failures around indirect network externalities in two-sided markets constrain adoption of financial technologies

Large spillovers of an adoption subsidy targeted to a subset of consumers

 Over half of consumer surplus from policy shock to financial technology adoption accrue to other consumers

Results speak to political economy of government policy to subsidize financial inclusion of poor households

 Such spending may be politically popular even among richer tax payers due to spillovers
Appendix

Background on Prospera

Large program: 24% of Mexican households receive benefits

One of first conditional cash transfer programs

- Targeted to poorest households with children 0–18 or pregnant women
- Conditional on school attendance and health check-ups/vaccinations

Started in rural localities in 1997 as Progresa

Expanded to urban areas in 2002–2003 as Oportunidades

Urban beneficiaries given Bansefi bank account in 2005

- Eligible to get a debit card on own, but no automatic transfers
- Debit card rollout automatically switched them to this type of account

Distribution of retail employment share by firm size

Employment share distribution of retailers with < 10 **employees**

Profits

Debit cards reduce travel distance

Cuernavaca

Debit cards reduce travel distance

Cuernavaca

Debit cards reduce travel distance

Recipients use their cards at ATMs

Recipients make more withdrawals

Debit cards lead to more savings

Some start saving right away; others after delay

Proportion who save

Higgins (Northwestern)

Rollout details

Rollout timing

Mechanism 1: Travel costs to access money

Panel B. Activity foregone to withdraw transfer

Mechanism 2: Checking balance to monitor bank, build trust

Mechanism 2: Checking balance to monitor bank, build trust

Increase in overall savings or substitution?

	(1)	(2)	(3)	(4)	
Consumption	-175.36**	-150.51** -136.52**		-155.11**	
	(81.31)	(70.43)	(61.75)	(62.07)	
	[-353.11, -1.52]	[-306.24, -2.30]	[-276.37, -4.75]	[-288.02, -33.10]	
Income	98.16	106.01 75.50		38.11	
	(170.03)	(150.31)	(127.77)	(106.12)	
	[-290.77, 486.11]	[-230.64, 468.97]	[-219.75, 376.72]	[-175.00, 251.64]	
Asset index	0.06	0.06	0.07	0.03	
	(0.08)	(0.08)	(0.07)	(0.08)	
	[-0.12, 0.24]	[-0.12, 0.24]	[-0.08, 0.23]	[-0.20, 0.24]	
<i>p</i> -value consumption vs. income	[0.047]	[0.041]	[0.056]	[0.057]	
Number of observations	9,246	9,246	9,246	7,754	
Number of households	2,868	2,868	2,868	2,200	
Time fixed effects	Yes	Yes	Yes	Yes	
Household fixed effects	Yes	Yes	Yes	Yes	
Household characteristics \times time	No	No	No	Yes	
Winsorized	No	1%	5%	5%	

Rollout details
Rollout timing

Why was it hard to save informally?

Money might be "hot" in hand or when being saved at home (Ashraf 2009)

▶ Rollout details ▶ Rollout timing

Why was it hard to save informally?

Money might be "hot" in hand or when being saved at home (Ashraf 2009)

May be easier for other household members to access the money when saved at home (Anderson and Baland 2002; Jakiela & Ozier 2016; Schaner 2015)

Rollout details
Rollout timing

Why was it hard to save informally?

Money might be "hot" in hand or when being saved at home (Ashraf 2009)

May be easier for other household members to access the money when saved at home (Anderson and Baland 2002; Jakiela & Ozier 2016; Schaner 2015)

We find evidence consistent with this:

- Spending on temptation goods (alcohol, tobacco, sugar, etc.) falls by 14%, compared to 5% fall in overall consumption
- Effect of debit cards on savings concentrated among women with low baseline bargaining power

Comparing effect sizes across studies

Study	Intervention	Country	Months	s Effect Size			
Panel A. Studies with Approximately One-Year Duration							
Drexler, Fischer, and Schoar (2014)	Financial education	Dominican Republic	12	2			
Karlan and Zinman (2018)	Interest rate	Philippines	12	2			
Kast, Meier, and Pomeranz (2018)	Savings group	Chile	12	2			
Karlan et al. (2016)	Reminders	Philippines	9–12	2			
Kast and Pomeranz (2014)	Account	Chile	12	2 +++			
Somville and Vandewalle (2018)	Payment default	India	8	3 +••			
Dupas and Robinson (2013)	Account or lockbox	Kenya	12	2 +++			
Prina (2015)	Account	Nepal	13	3 +++			
This paper (1 year)	Debit card	Mexico	12-15	5 +=+			
Seshan and Yang (2014)	Financial education	India (migrants to Qatar)	13–17	$7 \leftarrow 0 \rightarrow $			
Panel B.	Studies with Longer Du	iration		—			
Ashraf, Karlan, and Yin (2006)	Deposit collection	Philippines	32	2			
Dupas et al. (2018)	Account	Malawi	24	4			
Karlan et al. (2017)	Savings group	Ghana, Malawi, Uganda	22-30				
Dupas et al. (2018)	Account	Uganda	24	4)			
Schaner (2018)	Interest rate	Kenya	36	6			
This paper (2 years)	Debit card	Mexico	20-23	3 +=-			
			-	-0.02 0.00 0.02 0.04 0.06 0.08			
	Stock of Savings as Proportion of Annual Income						

Calendar of transfer dates

Titular beneficiaria: Usted podrá retirar sus apoyos con su Tarjeta de Débito a partir de la fecha indicada en cajeros automáticos ó establecimientos autorizados (que aceptan tarjetas VISA).

Recuerde que en cajeros automáticos podrá realizar dos operaciones (retiros ó consultas) gratuitas al bimestre, también puede utilizar su Tarjeta para comprar en establecimientos que aceptan Tarjetas de Débito VISA.

Pamphlet provided with debit card

Higgins (Northwestern)

Rollout details

No change in number of beneficiaries

Rollout not correlated with observables

Test using discrete time hazard

Panel A: Banco de México, CNBV, population, Prospera, and	(1) Mean	(2) Standard	(3) Discrete	Panel B: INEGI measures used to track development	(1) Mean	(2) Standard	(3) Discrete
electoral data Variable		deviation	time hazard	Variable		deviation	time hazard
Log point-of-sale terminals	5.82	1.84	0.006	% illiterate (age 15+)	6.13	3.94	0.007
$\Delta \log \text{point-of-sale terminals}$	0.68	0.17	(0.007)	Δ % illiterate	-0.01	0.01	(0.005) -0.757
Log bank accounts	9.97	3.53	0.002	% not attending school (6-14)	4.23	1.94	-0.011
∆ log bank accounts	2.07	4.02	0.001	$\Delta\%$ not attending school	-0.03	0.02	-0.435
Log commercial bank branches	2.55	1.44	0.014	% without primary education (15+)	40.20	10.18	-0.000
$\Delta\log$ commercial bank branches	0.65	0.97	-0.009	$\Delta\%$ without primary education	0.17	0.04	0.264
Log government bank branches	0.64	0.59	0.031	% without health insurance	46.51	15.82	0.000
$\Delta\log$ government bank branches	0.18	0.41	0.001	$\Delta\%$ without health insurance	-0.05	0.08	-0.003
Log commercial bank ATMs	3.12	1.77	-0.018	% with dirt floor	5.31	5.30	-0.000
Log government bank ATMs	0.16	0.37	-0.009	Δ % with dirt floor	-0.02	0.02	0.494
Log population	11.29	1.27	0.016	% without toilet	5.81	3.50	-0.006
Δ log population	0.10	0.18	-0.021	Δ % without toilet	-0.02	0.04	-0.024
Log Prospera beneficiaries	7.09	1.11	-0.003	% without water	6.23	9.00	0.000
Δ log Prospera beneficiaries	0.07	0.38	-0.000	Δ % without water	-0.04	0.05	0.088
% vote share PAN	29.01	15.00	0.000	% without plumbing	3.62	6.20	0.004
Δ % vote share PAN	-0.51	17.49	0.001	Δ % without plumbing	-0.06	0.06	0.111
Mayor - PAN (× 100)	19.31	39.55	-0.000	% without electricity	4.32	2.19	0.006
Δ mayor – PAN (× 100)	-11.97	58.17	0.000	Δ % without electricity	0.02	0.03	0.109
			(0.000)	% without washing machine	33.81	14.47	0.001
				$\Delta\%$ without washing machine	-0.10	0.05	-0.017
				% without refrigerator	17.31	10.13	-0.002
				Δ % without refrigerator	-0.08	0.06	0.043 (0.268)

Pre-trends

Benefits of POS adoption

From focus groups:

- Increased security
 - Less risk of losing revenue to robbery
 - Less risk employees skim off cash or inventory
- Convenience
 - Eliminate need to physically travel to bank to deposit sales
- Increased sales, and avoiding losing customers who adopt cards
 - One participant estimated a 15–20% increase in sales after adopting
 - Another reported losing clients as card adoption in the area increased

Costs of POS adoption

Card use by new cardholders

Data: From Bansefi: all transactions made by Prospera beneficiaries

106 million transactions in 961,617 accounts

Observe all types of account transactions

- Deposits
- Withdrawals at ATMs
- Withdrawals at bank branches
- Spending on debit card

For debit card transactions, observe string of store name

New cardholders make purchases at POS

Banks do not appear to respond to shock

Spillovers to other consumers' card adoption

Spillovers to other consumers' card adoption (balanced over time)

All 255 municipalities in rollout:

log Number of Debit Cards_{mt} = $\xi_m + \delta_t + \sum_k \phi_k D_{mt}^k + \varepsilon_{mt}$

Word-of-mouth learning?

Municipalities with below-median beneficiary transactions at supermarkets

Word-of-mouth learning?

Municipalities with above-median beneficiary transactions at supermarkets

By ATM density

By ATM density

By social connectedness

By social connectedness

Prices

Data: High-frequency store by product by week price data, 2002–2014

- Microdata used to construct Mexico's Consumer Price Index
- \sim 10 million price quotes
- Product codes are barcode-equivalent (e.g., 600ml Coca-Cola bottle)
- Restrict to food, drink, tobacco categories

Specification: Event study difference-in-differences

$$\log Price_{gst} = \eta_{gs} + \delta_t + \sum_k \phi_k D^k_{m(s)t} + \varepsilon_{gst}$$

- η_{gs} are barcode-level-good by store fixed effects
- $D_{m(s)t}^{k} = 1$ if municipality *m* received the card shock *k* periods ago
- As before, aggregated to 2-month periods

No price effect

No price effect $\log Price_{gst} = \eta_{gs} + \delta_t + \sum_k \phi_k D_{m(s)t}^k + \varepsilon_{gst}$ **Supermarkets** 0.03 0.02 0.01 0.00 φ -0.01 -0.02 -0.03 -18 -12 -66 12 18 24 Months since card shock ▶ Profits Adoption Consumption

Transaction sizes

Data: universe of transactions at corner stores (by all cardholders)

Result: >20% less than US\$2, >50% less than US\$4

Consumption shares by store type (control)

Higgins (Northwestern)

Consumption

Consumption across stores

$$\begin{split} \log Spending_{it}^{s} &= \lambda_{j(i)} + \delta_{t} + \gamma D_{j(i)t} + \varepsilon_{it} \\ \log Spending_{it}^{s} &= \xi_{j(i)Card(i)} + \psi_{Card(i)t} + \delta_{t} + \gamma D_{j(i)t} + \omega D_{j(i)t} \times \mathbb{I}(Card)_{it} + \varepsilon_{it} \\ \log Spending_{it}^{s} &= \xi_{j(i)Ben(i)} + \psi_{Ben(i)t} + \delta_{t} + \gamma D_{j(i)t} + \omega D_{j(i)t} \times \mathbb{I}(Ben)_{it} + \varepsilon_{it} \end{split}$$

	(1)	(2)	(3) Depe	(4) endent va	(5) riable: log	(6) spending	(7) at	(8)	(9)
	Corner stores			Supermarkets			Total		
Diff-in-diff	0.067 (0.032)	0.051 (0.033)	0.076 (0.033)	-0.018 (0.043)	0.003 (0.050)	-0.016 (0.045)	0.029 (0.030)	0.029 (0.033)	0.041 (0.030)
Diff-in-diff \times has credit card		0.061 (0.040)			-0.058 (0.062)			-0.012 (0.040)	
Diff-in-diff \times Prospera beneficiary			-0.127 (0.060)			-0.030 (0.133)			-0.161 (0.063)
P-value DID + (DID $ imes$ interaction)		[0.009]	[0.423]		[0.250]	[0.732]		[0.581]	[0.073]
Number of households	49,810	49,810	49,810	49,810	49,810	49,810	49,810	49,810	49,810
Number of localities	220	220	220	220	220	220	220	220	220
Locality fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Locality by card/beneficiary fixed effects		Yes	Yes		Yes	Yes		Yes	Yes
Card/beneficiary by time fixed effects		Yes	Yes		Yes	Yes		Yes	Yes

Consumption across stores: quantity of food (kg and liters)

log Quantity^s_{it} = $\lambda_{i(i)} + \theta_{q(i)t} + \gamma D_{i(i)t} + \sum_{q=2}^{5} \psi_q \mathbb{I}(quintile = q)_{it} \times D_{i(i)t} + \varepsilon_{it}$

Higgins (Northwestern)

Consumption

Consumption across stores: by product category

 $\log Spending_{it}^{gs} = \lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \sum_{q=2}^{5} \psi_{q} \mathbb{I}(quintile = q)_{it} \times D_{j(i)t} + \varepsilon_{it}$

Results for richest quintile

Consumption across stores: by product category (food)

$\log Spending_{it}^{s} = \lambda_{j(i)} + \theta_{q(i)t} + \gamma D_{j(i)t} + \beta_{q(i)t} + \gamma D_{j(i)t} + \beta_{q(i)t} + \beta_{$	$-\sum_{q=2}^5 \psi_q \mathbb{I}(extsf{quintile} = extsf{q})_{it} imes extsf{D}_{j(i)t} + arepsilon_i$
--	--

	(1) Grains/ tortillas	(2) Meats	(3) Dairy/ eggs	(4) Oils/ fats	(5) Produce	(6) Sugar/ coffee/tea/ spices	(7) Prepared foods	(8) Soda	(9) Alcohol/ tobacco
Panel A: Corner stores									
Quintile 1	-0.051 (0.096)	0.145 (0.175)	0.292 (0.154)	-0.015 (0.101)	0.307 (0.137)	0.329 (0.145)	-0.031 (0.149)	-0.060 (0.141)	0.089 (0.057)
Quintile 2	0.033 (0.099)	0.080 (0.167)	0.068 (0.130)	0.159 (0.078)	0.052 (0.120)	0.055 (0.115)	-0.243 (0.145)	0.180 (0.136)	0.070 (0.071)
Quintile 3	-0.025 (0.109)	0.003	0.140	0.097 (0.073)	0.221 (0.133)	0.135 (0.124)	-0.056	0.191 (0.129)	0.128
Quintile 4	0.144	0.167	0.162	0.013	0.130	0.019	-0.060	0.234	-0.053
Quintile 5	0.483	0.493	0.399	0.072	0.321	0.243	0.173	0.514	-0.011
Baseline mean Number of observations	5.772 49,810	4.289 49,810	4.765 49,810	0.740 49,810	3.660 49,810	1.683 49,810	2.501 49,810	4.332 49,810	0.580
Number of localities	220	220	220	220	220	220	220	220	220
Locality fixed effects Quintile \times time fixed effects	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Consumption

Consumption across stores: by product category (food)

$\log Spending_{it}^s = \lambda_{j(i)} + heta_{q(i)t} + \gamma D_{j(i)t} + $	$+\sum_{q=2}^{5}\psi_{q}\mathbb{I}(quintile=q)_{it} imes extsf{D}_{j(i)t}+arepsilon_{it}$
---	--

	(1) Grains/ tortillas	(2) Meats	(3) Dairy/ eggs	(4) Oils/ fats	(5) Produce	(6) Sugar/ coffee/tea/ spices	(7) Prepared foods	(8) Soda	(9) Alcohol/ tobacco
Panel B: Supermarkets									
Quintile 1	-0.024 (0.142)	-0.013 (0.122)	-0.092 (0.121)	0.018 (0.079)	-0.069 (0.138)	0.011 (0.099)	0.004 (0.069)	-0.096 (0.089)	0.039 (0.036)
Quintile 2	0.210 (0.151)	0.151 (0.128)	0.161 (0.132)	0.121 (0.068)	0.086 (0.143)	0.250 (0.120)	-0.024 (0.073)	0.009 (0.093)	-0.007 (0.038)
Quintile 3	-0.034 (0.125)	0.121 (0.123)	-0.070	0.076 (0.073)	-0.004	0.207	-0.022	-0.004 (0.087)	0.095 (0.054)
Quintile 4	-0.030	0.057	-0.167	-0.087	-0.049	-0.048	0.013	-0.125	-0.092
Quintile 5	-0.283	-0.184 (0.205)	-0.315	-0.069	-0.138	-0.144 (0.117)	-0.311 (0.108)	-0.343	-0.019
Baseline mean	2.065	2.122	2.042	0.542	1.895	0.956	0.634	1.311	0.242
Number of observations	49,810	49,810	49,810	49,810	49,810	49,810	49,810	49,810	49,810
Number of localities	220	220	220	220	220	220	220	220	220
$\begin{array}{l} \mbox{Locality fixed effects} \\ \mbox{Quintile} \times \mbox{time fixed effects} \end{array}$	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes

Consumption

Corner store owners evenly distributed by income

▶ Profits

Corner store churn

 $\mathbf{y}_{it} = \lambda_i + \delta_t + \beta \mathbf{D}_{it} + \varepsilon_{it}$

	(1) (2)		(3)	(4)	
	Only 200	8 stores	All stores		
	Number of Corner Stores	Log Number of Corner Stores	Number of Corner Stores	Log Number of Corner Stores	
	-3.056*** (1.171)	-0.048 (0.040)	0.076 (0.642)	0.006 (0.056)	
Number of localities	250	250	250	250	
Locality fixed effects	Yes	Yes	Yes	Yes	
Time fixed effects	Yes	Yes	Yes	Yes	

No wage effect $\log Wage_{it} = \lambda_{m(i)} + \delta_t + \sum_k \phi_k D^k_{m(i)t} + \varepsilon_{it}$ Supermarkets 0.10 0.05 0.00 -0.05 -0.10 -18 -12 -6 6 12 18 24 Months since card shock ▶ Profits

No wage effect

Consumer gains from supply-side POS adoption

 $-\theta_k/\alpha_k$ is price-equivalent value of no stores \rightarrow all stores with POS:

$$-\frac{\theta_k}{\alpha_k} = \frac{d \log \phi_{akst} / d\overline{POS}_{z(a)st}}{d \log \phi_{akst} / d \log P_{ast}}$$
$$= \frac{d \log P_{ast}}{d\overline{POS}_{z(a)st}}$$

-(θ_k/α_k)ΔPOS_{ks} is value to consumers of supply-side response to shock
ΔPOS_{ks} is observed change in adoption in response to shock

Next: plug in $-\frac{\theta_k}{\alpha_k} \Delta POS_{ks}$ for $d \log P_s$ in standard consumer surplus formula

Consumer gains from supply-side POS adoption

First-order approximation of compensating variation:

$$CV = e(P^0, U^0) - e(P^1, U^0)$$

First-order Taylor expansion of $e(P^0, U^0)$ around P^1 :

$$\approx \left[e(P^1, U^0) + \sum_s \frac{\partial e(P^1, U^0)}{\partial P_s} (P^0_s - P^1_s) \right] - e(P^1, U^0)$$

Shephard's lemma and duality:

$$\approx -\sum_{s} x_{s}^{1} (P_{s}^{1} - P_{s}^{0}) \approx -\sum_{s} P_{s}^{1} x_{s}^{1} \left(\frac{P_{s}^{1} - P_{s}^{0}}{P_{s}^{1}} \right) \approx \sum_{s} P_{s}^{1} x_{s}^{1} \left(\frac{\theta}{\alpha} \Delta POS_{s} \right)$$

Proportional Δ consumer surplus $\approx \sum_{s} \phi_{s}^{1}(\theta/\alpha) \Delta POS_{s}$