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A. Proofs

Similar to the proof in Calcagno et al. (2014), our proof of Proposition 1 relies on a backward-
induction argument. In the first step of the proof, we show that the Pareto-dominant equilibrium
profile ē is absorbing in the revision game. If all players choose the maximal effort, then, for
any following subgame, the unique subgame perfect equilibrium is for all players to play ē. More
formally, we show that, at a certain period, it is true that if all other players are preparing ē−i,
player i will prepare ēi if they have a revision opportunity. In the period immediately before, if all
other players are preparing ē−i, player i will prepare ēi if they have a revision opportunity.
If only two players are present, this would constitute the whole argument because one player

would always be in the position to induce the other player to prepare the maximum effort. However,
n > 2 complicates the matter, as the unraveling argument is not trivial. We show that the condition
(n − 2)K < (n − 1) is sufficient to have a lower bound on players’ payoff of choosing the efficient
action converging to the efficient payoff. Thus, at the end of the countdown, all players prepare
the maximal effort with probability 1− ε.

PROOF:
Let v t

i(k) be the infimum of player i’s payoff at t in subgame perfect equilibrium strategies and
histories such that there are at least k players who prepare the action ē, and no player receives a
revision opportunity at t. By mathematical induction with respect to k = n, n − 1, ..., 0, we show
that limt→−∞ vti(k) = πi(ē),∀i. Step 1 below shows the proof for k = n.
Step 1 Consider the final period. All −i players are preparing the profile ē−i and i has a revision
opportunity. It is optimal for player i to prepare ēi, as this leads to a higher payoff than any other
possible effort choice (ē is the Pareto-dominant profile and is an equilibrium).
Now, for the inductive step, consider any period τ after t. If all −i players are preparing the profile

ē−i and i has a revision opportunity, it is optimal for player i to prepare ēi. Consider also that, at
the period immediately before t, t−1, all −i players are preparing the profile ē−i and i has a revision
opportunity. If player i prepares ē, then they are guaranteed payoff πi(ē). If player i prepares any
other action e, their expected payoff can be bounded by (1−(1− p

n)
−t)πi(ē)+(1− p

n)
−t(πi(ē)−α) <

πi(ē) ∀t, where the bound is obtained by considering that (i) πi(ē)−α is the second-best payoff for
player i, (ii) with probability (1 − p

n)
−t player i gets no revision opportunity before the deadline,

and (iii) all other players continue to exert maximal effort. This concludes step 1.
Step 2 (inductive argument) Suppose that limt→−∞ vti(k + 1) = πi(ē), ∀i, with k + 1 ≤ n,; we
will show that limt→−∞ vti(k) = πi(ē), ∀i.
Consider an arbitrary ε > 0. Since limt→−∞ vti(k + 1) = πi(ē), ∀i, a finite T0 must exist such

that ∀t ≤ T0, v
t
i(k+1) ≥ πi(ē)− ε ∀i. Consider that k players prepare ē at a time t before the said

T0, that is, t = T0 + τ1 with τ1 ≤ 0. Then, if player j who is not preparing ē at time t can move
first by T0, they yield at least πj(ē) − ε by preparing ēj . This outcome implies that each player
i will at least yield πi(ē) −Kε. Therefore, we can define a lower bound for a player’s utility if k
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players are preparing ē at time t:

vti(k) ≥ 1
n(1− (1− p)τ1)(πi(ē)−Kε) + (1− 1

n(1− (1− p)τ1))πi(e) ∀i,

where 1
n(1 − (1 − p)τ1) is the probability that there is a revision and a particular player j who is

not preparing ē at that time is the first to get a revision before time T0. We also assume that if
such a move does not occur, the worst possible payoff will happen.
If τ1 is a sufficiently long time interval, then there exists finite T1 such that for all τ2 ≤ 0, if the

period is far removed from the deadline; t = T0 + T1 + τ2 ≤ T0 + T1, then vti(k) ≥ 1
nπi(e) + (1 −

1
n)πi(e)−Kε ∀i. Introducing a bit of notation, we can define α1 = 1

n , and vti(k) ≥ α1πi(ē) + (1−
α1)πi(e)−Kε ∀i
For t = T0 + T1 + τ2 we express the lower bound on i’s payoff vti(k) in different cases:

1) If j moves first by T0 + T1, then a lower bound on player i′s payoff depends on whether or
not j is preparing ēj .

• If j is not preparing ēj at time t, then a lower bound on player i′s payoff is πi(ē)−Kε
as before.

• If j is preparing ēj at time t they will move first by T0 + T1; then, a lower bound on
player j′s payoff is given by 1

nπj(ē)+(1− 1
n)πj(e)−Kε by the same reasoning as before.

Using the formula in Definition 1 to obtain a lower bound on player i’s payoff, we have:

πi(ē)−πi(e)
πi(ē)−πi(e)

≤ K
πj(ē)−(

1
nπj(ē)+(1− 1

n )πj(e)−Kε)

πj(ē)−πj(e)
. Hence, for player i, a lower bound on their

payoff is given by (1−K(1− 1
n))πi(ē) +K(1− 1

n)πi(e)−K3ε.

2) If i will move first by T0 + T1, then a lower bound depends on whether or not they are
preparing ēi.

• If they are one of the k preparing ē, then a lower bound is given by 1
nπi(ē)+(1− 1

n)πi(e)−
Kε.

• If they are not one of the k preparing ē, by doing a revision, they can guarantee, by the
inductive hypothesis, at least πi(ē)− ε.

In total, player i’s payoff satisfies:

vti(k) ≥ 1
n(1− (1− p)τ2)(πi(ē)−Kε)

+ ( 1n(1− (1− p)τ2) + (1− p)τ2)( 1nπi(ē) + (1− 1
n)πi(e)−Kε)

+ (1− 2
n)((1− (1− p)τ2))(1−K(1− 1

n))πi(ē) +K(1− 1
n)πi(e)−K3ε), ∀i

Taking a sufficiently long τ2, there exists a finite T2 such that at t = T0 + T1 + T2 + τ3 with τ3 ≤ 0,
we have that

vti(k) ≥ ( 1n + 1
n2 + (1− 2

n)(1−K(1− 1
n)))πi(ē)

+ (1− 1
n + 1

n2 + (1− 2
n)(1−K(1− 1

n)))πi(e)−K3ε, ∀i

defining α2 = 1
n + 1

n2 + (1 − 2
n)(1 − K(1 − 1

n)), we have the second step vti(k) ≥ α2πi(ē) + (1 −
α2)πi(e)−K3ε ∀i.
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Recursively, for each M = 1, 2, ..., there exists T0, T1, ... such that t ≤ T0 + T1 + ...+ TM ,

vti(k) ≥ αMπi(ē) + (1− αM )πi(e)−K2M−1ε ∀i.

with αM = 1
n + 1

nαM−1 + (1 − 2
n)(1 − K(1 − αM−1)). We can express the coefficient as a linear

expansion, αM = A+BαM−1 with A = 1
n(n− 1−K(n− 2)) and B = 1

n(1 +K(n− 2)).
The condition in Proposition 1 guarantees that, in the αM coefficient above, both A and B are

strictly between zero and one. Furthermore, note that A + B = 1. This is sufficient to show that
αM is monotonically increasing and converges to 1. Taking a large enough T yields the result.
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B. Numerical solution of the discrete time revision game

In this section, we explain the backward-induction procedure to solve the game for the specific
parameters given in our experiment. We consider a particular payoff specification following our
experimental setup: a triple of linear coefficients γ, α, and β; a given number of players n; a given
set of actions E; a pre-play length T ; and a given revision probability, p. We solve the game for
the expected payoff of every player at any time −t ∈ {−T,−(T − 1), ...,−1, 0}, for every strategy
profile. We also obtain the transition probability from any strategy profile to any other strategy
profile between any two periods.

At the deadline (t = 0):

We construct an n-tuple vector with dimension |E|n, called V0. Each line of V0 has the payoff of
each player if a particular strategy profile, e, is played.

Before the deadline, t ∈ [−T, 0):

Consider a given vector Vt+1. An n-tuple of Vt+1 has the expected payoff of all players at time
t + 1 if that particular strategy profile is prepared (given that all players maximize their payoff if
they have a revision in the future). We proceed backward inductively, given the vector Vt+1, we
construct Vt in the following way. First, for any strategy profile, we can compute how a player
would revise their effort choice. That is, if player i had a revision opportunity, which effort would
they choose, given that their expected payoffs of different action profiles are given by the vector
Vt+1. This gives us the auxiliary matrix V rev

t , a |E|n × n matrix of n-tuples. Each element of the
matrix gives us the payoff of all players if the strategy line were in place, and the player column had
a revision opportunity at time t. The vector Vt is obtained by (1−p)×Vt+1+

p
n×V rev

t ×1n×1, where
the first term is obtained when no one has a revision (and, thus, the strategy profile is unchanged),
and the second term is the expected value of the payoff for each player given that someone has
received a revision opportunity. We can iterate this process until V−T .

Using the numerical solution to verify the proposition:

For a particular set of parameters, γ, α, β, n, |E|, T, p, we say that Proposition 1 holds if,
for a finite T̄ (γ, α, β, n, |E|, p) < T , when a player has a revision opportunity, they choose ēi
independent of the effort profile in place. That is, for all t > T̄ , playing ēi dominates any other
effort choice, and all elements of the matrix V rev

t are equal to πi(ē). For the first part of Proposition
1, note that for any given ε > 0, if T ′ ≥ T̄ + τ , then the profile ē is played with probability larger
than 1− ε. The integer τ is defined as the minimum interval of time such that the probability that
all players have at least one revision opportunity in that interval is larger than 1− ε; that is, τ is
the smaller integer that solves

�
1− (1− p

n)
τ
�n ≤ 1−ε. We can see that the time interval needed, τ ,

increases with the number of players and decreases with the probability of a revision being awarded.
For the second part of Proposition 1, it is sufficient that T ′ ≥ T̄ . Note that the condition specified
on the propositions is sufficient, but not necessary for the particular payoff parameters used in this
paper.

Going beyond the proposition:

As a byproduct of the construction of Vt from Vt+1, we also obtain a transition matrix, Mt, with
dimensions |E|n×|E|n, that specifies for any strategy profile today the probability that each profile
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will be chosen in the next period. For any given set of parameters, given a distribution of effort
profiles at time −T , e(−T ), we can calculate the final distribution of efforts, at time 0, for any
length of the pre-play phase, e(−T )×Q0

s=−T Ms.
The two plots in Figure B.1 highlight how the probability of a revision, p, changes the expected

results of the game. We focus on two key dimensions: (i) the number of periods needed for ē to
be the dominant effort choice independent of the profile in place, T̄ ; and (ii) the probability of the
profile ē being chosen at the end of the countdown, given that T = 60 and the game was started
with a profile chosen at random.
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Figure B.1. Numerical Solution Outputs

Finally, we redo the numerical analysis above for payoff parameters in treatment RM-VHBB. We
find that with revision opportunities arriving with 80% chance, 14 interactions are sufficient for the
uniqueness results to hold. Since the pre-play phase lasts 60 seconds, the theory predicts a unique
revision outcome in the revision game and, hence, RM-VHBB results should be similar to those in
RM.
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C. Evaluating the exact predictions for all treatments

In our paper, we highlight the exact theoretical predictions given the environment implemented
in the RM treatment. In Section IV.B, we test these exact predictions. We now discuss exact
predictions for other treatments. Given the multiplicity of equilibria displayed in many of the
treatments (i.e. Baseline, S-CT, R-CT, R-R-CT, I-RM, and S-RM), we concentrate on predictions
that hold for all pure strategy equilibria. For that, we focus on variables other than the effort profile
chosen; instead, we concentrate on full coordination and on the actual revision process. Below, we
describe exact theoretical predictions for all treatments and provide empirical tests for each one.

Coordination

In all treatments, the theoretical prediction is that all groups should be fully coordinated at the
payoff relevant choice.1 In Table C.1, we present the frequency of fully coordinated groups as well
as the equilibrium deviation for the payoff relevant choices of each treatment.
Furthermore, for treatments with uncertainty regarding future revisions, we can go beyond pre-

dicting full coordination at the payoff relevant moment. The theoretical prediction is that full
coordination should occur from the initial choices. This implies that, for I-RM, S-RM, RM, and
RM-VHBB all groups should be fully coordinated from the initial choice

Table C.1—Exact predictions and empirical evidence

Empirical Evidence Prediction

Treatment FC(PR) ED(PR) FC(I) ED(I) NRF FC ED NRF

Baseline 2.5 1.49 NA NA NA 100 0 NA
S-CT 27.5 0.86 NA NA NA 100 0 NA
R-CT 31.9 0.97 NA NA NA 100 0 NA
R-R-CT 36.2 0.96 NA NA NA 100 0 NA
I-RM 38.8 0.78 38.8 0.97 46.3 100 0 100
S-RM 46.2 0.69 30.0 1.29 25.0 100 0 100
R-RM 60.0 0.58 NA NA NA 100 0 NA
RM 66.2 0.49 50.6 1.04 42.5 100 0 100
RM-VHBB 61.3 0.40 45.0 1.08 42.5 100 0 100
Van Huyck, Battalio and Beil (1990) (B) 0 1.46 NA NA NA 100 0 NA
Blume and Ortmann (2007) (B) 12.5 1.74 NA NA NA 100 0 NA
Blume and Ortmann (2007) (C) 26.6 1.17 NA NA NA 100 0 NA
Deck and Nikiforakis (2012) (NT)2 37.0 0.87 NA NA NA 100 0 NA
Weber (2006) (B) 1.7 1.5 NA NA NA 100 0 NA

Note: FC and ED stand for the percentage of fully coordinated groups and the average equilibrium deviation.
NRF presents the frequency of no revision cases. That is, out of all groups and all rounds, in what fraction of
cases did groups not revise (every member of a group kept their initial choice till the end of the phase). Finally,
PR and I indicate whether the choice is payoff relevant or initial choice. B next to other papers stands for their
baseline treatment results. C in Blume and Ortmann (2007) is for the communication treatment in the minimum
effort game.

1For R-RM, the prediction is that, with probability high enough the group should be fully coordinated. The exception of
R-RM follows from the randomness introduced by exogenous initial choices and random revision opportunities. For instance,
it is a possibility that the initial effort profile will not display full coordination and that no player has any revision opportunity
throughout the 60 seconds.

2For Deck and Nikiforakis (2012), we have the data from the Neighbourhood Treatment (NT), and the calculations in Table
C.1 are for that treatment only.
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Revising Effort Choices

The randomness and asynchronicity of the revision opportunity allow us to obtain additional
predictions regarding the revision of effort choices. In the I-RM, RM, and RM-VHBB no player
should ever revise their effort along the equilibrium path of any revision equilibrium. In any revision
equilibrium of these games, players choose an initial effort configuration that is fully coordinated
(in RM and RM-VHBB we can further pin down a unique profile, the efficient effort profile) and
never revise their strategy. Please note that, since revisions are randomly and asynchronously
awarded, they are not a feature of the equilibrium path of a revision equilibrium. Furthermore,
for S-RM, revisions might be a part of the equilibrium path in a revision equilibrium. However, in
any pure strategy revision equilibrium, at each revision opportunity either all players jointly revise
their effort choices to a profile in which all choose the same effort or no player revises their effort
choice and they remain all choosing the same effort level. Hence, one theoretical prediction is that
a revision should only be used by a player to change her effort choice if all other players also use
that same revision opportunity to change their effort choices.
In Table C.1, we provide a test of these predictions. For the treatments I-RM, RM, and RM-

VHBB we display the frequency of rounds in which a group does not utilize any revision. For the
treatment S-RM, we display the frequency of rounds in which a group either does not utilize any
revision or, if a subject utilizes that revision to change her effort choice, then all subjects utilize
the same revision opportunity.
Taken together, these tests highlight the lack of support for the exact predictions obtained from

the theory, in all treatments. In the paper, when evaluating the predictions for RM, we state that
the lack of support for exact theoretical predictions is, in some sense, expected given the specificity
of such predictions and the simplicity of the equilibrium concepts used. To further substantiate this
claim, we also evaluate the empirical support for exact theoretical predictions given the environment
implemented in the lab in other papers in the literature.

Evaluating the exact predictions in the literature3

We now proceed to test exact theoretical predictions using data from similar papers in the
literature (see Table C.1). The introduction of incremental commitment implying the selection of a
unique outcome as the subgame perfect equilibrium outcome of the extended game is a novel point
of our work, hence we must go beyond theoretical predictions about the effort profile. However,
there are alternative dimensions that are clearly pinned down by the theory, even on papers that
implement cheap talk communication. Following the same intuition as above, we focus on the
prediction that all groups should be fully coordinated in the payoff-relevant choice. We note that
the prediction that, in all Nash equilibria of the normal form game, a group’s effort profile should be
fully coordinated holds for simultaneous play minimum effort games. Furthermore, that prediction
cannot be altered by pre-play cheap talk communication.

3We would like to thank the authors of the following papers for making their data available for the calculations in the
current paper: Weber (2006), Blume and Ortmann (2007), and Deck and Nikiforakis (2012).
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D. Additional Tables, Figures and Discussions

In this section, we provide more details on the overall performance of all treatments, details on
non-parametric tests, additional regression analyses, as well as some analyses of the behavior over
60 seconds and 10 rounds.

D.1. Overall performance of all treatments

Figure D.1 presents two graphs highlighting the overall performance of all treatments on four
dimensions: minimum effort, equilibrium deviation, average effort, and frequency of coordination
on median action.
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Figure D.1. Overall performance of all treatments
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D.2. Non-parametric test results

Table D.1 includes average values of the main five measures used throughout the paper. Table D.2
presents the test results of non-parametric MWU test p-values between RM and other treatments
in the paper. We use group average in a round as a unit of observation for all the tests in Table
D.2.
Figures D.2, D.3, D.4, and D.5, include empirical CDFs (ECDFs) of each comparison listed in

Table D.2. The figures include ECDFs, as well as, the p-value of a non-parametric test, Kolmogorov-
Smirnov test, that compares the cumulative distributions of two comparison samples.

Table D.1—Average values for focal variables

Payoff Minimum Effort Freq 7s Fully Coord Eqbm Dev
Baseline 6.946 3.587 0.269 0.025 1.485
S-CT 8.836 4.612 0.442 0.275 0.860
R-CT 9.194 4.862 0.555 0.319 0.966

R-R-CT 9.315 4.938 0.598 0.362 0.963
I-RM 9.468 4.987 0.569 0.388 0.779
S-RM 9.183 4.787 0.490 0.463 0.694
R-RM 10.429 5.537 0.713 0.600 0.577
RM 10.926 5.825 0.780 0.662 0.485

RM-VHBB 11.042 5.438 0.590 0.613 0.396

Table D.2—MWU test p-values (group average as a unit of observation)

RM vs. Payoff Minimum Effort Freq 7s Fully Coord Eqbm Dev # of obs.
S-CT 0.000 0.000 0.000 0.000 0.000 160, 80
R-CT 0.000 0.000 0.000 0.000 0.000 160, 160

R-R-CT 0.000 0.000 0.000 0.000 0.000 160, 80
I-RM 0.000 0.000 0.000 0.000 0.000 160, 80
S-RM 0.000 0.000 0.000 0.003 0.006 160, 80
R-RM 0.173 0.169 0.151 0.343 0.319 160, 80

RM-VHBB 0.260 0.061 0.003 0.447 0.772 160, 80
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Figure D.2. ECDFs for relevant measures
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Figure D.3. ECDFs for relevant measures

(a) RM vs I-RM (b) RM vs S-RM
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Figure D.4. ECDFs for relevant measures

(a) RM vs R-RM (b) RM vs RM-VHBB
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Figure D.5. ECDFs for relevant measures

(a) RM vs R-CT (b) RM vs R-R-CT

13


