Mathematical Appendix

PROOF OF LEMMA 1:

The steps of the proof are exercised in detail only for the seller’s payoff function, the
result for the buyer can then be derived in a similar way. In a first step, we calculate the
derivative of the seller’s expected profit. For this, note that as a direct application of the
envelope theorem (for constrained maximization) we get for all 6 € ©

0

(Al) %W(ﬂ7 a, 07 Q*(67 g, 0)) = 70(7(0'7 97 Q*(ﬂv g, 0))7
and
(AQ) %5(0—797@5(0’8)) = —CU(U,H,Q5(0'79))-

Next, to calculate the derivative %s(ﬂ, o), note that for each 6 the integrand in s is the
piecewise defined function

(1_7)5(030a6)+7W(ﬂa0707Q*)_73(679:(1) lfQ* >(z
(A3) o S(o,0, QS) if Q* < Qs
W(B,0,0,Q") = B(6,6,Qp) Q" <Qp
It turns out that the piecewise defined derivative of this function is continuous, i.e. the

pieces of this function are joined smoothly. We assume integrability of C,, so that we
can interchange integration and differentiation, and get:

0 x
(ADZs(B0) = = [ (1=9)Ca(0.0.0) +1Ca(0,0.Q")aF -1
g [@*>d]
*/ 00(0—797QAS)dF7 / 00(0797Q*)dF
[@s>Q"] [@B>@Q"]
= _(1_7)/ Ao(ﬂ70797q_)dF_ N Aa(6,0'70,@s)dF-
[Q*>a] QRs>Q~]

—/CU(U,G,Q*)CZF 1

Because we already know that for 3 = 3* the expected joint surplus is uniquely maxi-
mized at o*, we will study the function

(A5) 5(0') = 5(6*70) - </ W(ﬂ*70505Q*(6*7079))dF - U) .
which has derivative

(46) (o) =—(1-9) /[Q . Aaw*,a,aq)dF—/[Q A, (6°,0,0,Q3)dF.
*>q

5>Q*]

By exploiting Cyy < 0, it is straightforward to see that A, (8", 0,6, q) is weakly decreas-
ing in ¢, and that the first term in §'(o0) is negative and the second is positive (if they do
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not vanish). The first term is the derivative of what ER call the “hold-up tax”, this term
is responsible for any potential underinvestment, and the second term is the derivative
of the seller’s “breach subsidy“, this term may create overinvestment.

Now, in order to prove the lemma, consider first § = ¢r. In this case, for all ¢ > o™,
since @Q* is nondecreasing in o, the event [@Q* > qr] is equal to © and

(A7) §’(a):—(1—7)/AU(5*,0,9,qL)dF < o

Hence, § is a monotonically decreasing function in this range. All 0 > ¢* then lead to a
lower payoff than ¢*, hence max og(qr,p) < o*. For a contract over gy the first term in
§' vanishes for o < ¢*, i.e. § is a weakly increasing function. Therefore, at gy all o < o*
are dominated by ¢*, and minos(qy,p) > o*. Finally, consider gy and a low price py..

By definition of py, it holds that QS(U,Q) < Q*(B*,0,0) for all § € © and o. Therefore,
the function § is weakly decreasing for o > o*, hence os(qm, pr) = {c*}. For the buyer,
the corresponding claims follow from the assumption that Vs, > 0.

PROOF OF LEMMA 4:

Again, we prove the claim only for the seller. First, let us state the required conditions
more precisely. For each 6, whenever Q*(3*,0,0) < Qg(0,0) we need that S(c,0,Qs) is
concave in o, i.e.

an(ga 07 QS)2
qu(U, 01 QS)

This condition follows from Assumption 3, because the determinant of the Hessian matrix
of (o,q) — C(0,0,q) is positive at g = Qs. One can see here why a linear cost function
might be a problem: as Cy, becomes small, this condition becomes harder to fulfill.
Furthermore we need the condition that W (5", 0,0, Q*) is concave, meaning that

> 0.

(AS) CUU (07 07 QS) -

Coq(0,0,Q%)?

A oo 797 * * - Y
( 9) C (U Q )+ qu(ﬁ 70707Q*)

which also follows from Assumption 3. Last, we need the condition Cy,(c,0,q) > 0,
which is also implied by convexity of C' in both variables.

Since s is continuous in ¢, p and o (which is straightforward to check), according to
Berge’s theorem, the argmax correspondence og(g,p) is upper hemicontinuous. Since
upper hemicontinuity coincides with continuity if the correspondences are functions, for
Assumption 2 to hold it suffices that the function o — s(o, 3*) has a unique maximizer
for all ¢ and p. We therefore show that s is strictly concave, given that Assumption 3
holds. For this we need that the derivative (see equation A4) is decreasing in o. It
suffices to show that the continuous integrand is piecewise decreasing, which can be done
by calculating the piecewise derivatives and using the above conditions.

PROOF OF PROPOSITION 5:

Since because of Assumption 2 the best responses have a continuous selection, we may
assume that og(q,p) and B5(q,p) are continuous functions. For all p € [pr, px], define

(A10) ds(p) =={q € lqr,qu] : os(q,p) =0"}
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and

(A11) ds(p) :=={q € lar,qul : Bple,p) = 4"}

From Lemma 1 and the intermediate value theorem it follows that these sets are nonempty
for each p. Since the derivatives of the parties’ payoff functions are weakly increasing
in ¢ (go back to equation (A4) to see that this holds for s'(8%,0)), these sets must
also be convex, i.e. gs and ¢p are compact and convex valued upper hemicontinuous
correspondences. Consider first the case that they are functions.! Lemma 1 tells us that
qs(pr) = qu > qs(pr) and Gp(pr) = qu > Gs(pu). Applying the intermediate value
theorem again yields existence of a p such that ¢s(p) = ¢p(p) =: ¢. This contract (g, p)
thus leads to 3 as a best response to o* and o* as a best response to 3.

If the correspondences gs and gp are not single-valued, their graphs are still pathwise
connected and a similar argument applies: Since s and ¢p are compact and convex
valued upperhemicontinuous correspondences, the same is true for d := gs — gg. We have
to show that there exists a p with 0 € d(p). Since d(pr) contains nonnegative elements,
and d is upper hemicontinuous, the set {p € [pr,py]: d(p) N[0,qu] # D} is nonempty
and closed. But the same holds for {p € [pL,px]: d(p) N [—qu,0] # @}, and since the
union of these sets is [pr,pu]|, there must exist a p in their intersection. Convexity of
d(p) then implies that 0 € d(p).

PROOF OF COROLLARY 7:

The derivative of §(¢), as calculated in the proof of Lemma 1 (equation A6), evaluated
at ¢*, must vanish at the optimal contract. The corollary follows since for the kind of
functions defined in Assumption 6 it holds that

(A12) A, (q) = —C1(0)(Q" — q) and Ag(q) = V{(B)(Q" — q).

PROOF OF PROPOSITION 8:

When the price is py,, the buyer makes a profit on each unit, i.e. QB = q for all 6.

When price is pg, it holds that QS = q for all 8. Expected payoff is analogous to the
case with an intermediate price and can be rearranged to look as follows (again only for
the seller):

(A13)s(0, ) = /W(@a,e,Q*)dF—o—— /B(ﬁ,e,cj)dF

_(1 _’Y)/ A(B,O',e,(j)dF— (1 _A)/ A(ﬂ,O’,e,(j)dF
[@*>q] @

*<q]
with p = Apr, + (1 — A)pg. The claim can now be proved following the same steps as in
the proof of Proposition 5, the role of the price being played by A.
PROOF OF PROPOSITION 9:

We prove this result independently of previous results in this paper, because it holds
without Assumption 2, and would hold also for arbitrary investment decisions and linear
functions. For A\ = v, the seller’s expected payoff functions as stated in equation (A13)

IThis holds for example if the inequalities Csq < 0 and Vgg > 0 hold strictly everywhere, Q* is
continuous in 0, v € (0,1), and ¢* and B* are interior solutions.
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equals
1) so) = -y ([ ~ce.0mar-a)
(A15) +y (/ W(B,0,0,Q%)dF — o> - w/V(ﬂ,@,q)dF

with p = vpr, + (1 — v)py. In this case, the payoff functions are identical to the ones
that result from specific performance in ER. Next, consider the defining equation of o*,
which is that for all other o

(A16) [ W0 0.0 5 0NE 0" = [ W(50.0.Q°(0. 5" 6)dF o
Furthermore, from the definition of Q* we know that
(A17) W(ﬂ*,U,Q,Q*(O,B*,e)) > W(ﬁ*,U,G,Q*(O'*7ﬂ*,9)) for all 079'

From these two equations, it follows that
(A18) o* ¢ argmax/—C(U,H,Q*(U*,ﬂ*,ﬁ))dF -0

Since we assumed the special payoff functions defined in Assumption 6 it follows that
with ¢ = [ Q*(8",0%,0)dF

(A19) o* € argmax/—C(U,Q,Q)dF —o.

Hence, when 3 = 3%, all terms in the seller’s payoff function are maximized at o*, and it
is straightforward to show that the same holds symmetrically for the buyer.

Examples

In this appendix we compute two examples, to explore for which type of functions
Assumption 2 is likely to hold. In the first example P* is deterministic, such that the
concavity assumption becomes very important. The second example shows that the first
best can also sometimes be reached although the cost function is linear, as long as there
is enough variance in P*. Let v = % and

(B1) C(o,0,q) = S + i
0-7 7q - 20’q 6207

(4T 1 ¢

(B2) V(B,0,q) = <3C+3 2ﬁ>q29'

In the specification of the model the investment cost was normalized to be linear, but
it can as well be any convex function. For this example, we take 02/2 to be the cost of
investment . The uncertainty parameter 6 is assumed to be uniformly distributed on
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the interval [1,2]. The efficient quantity is

(B3) @G0 = (5o 5~ 35 37) 13

Calculations reveal that o* = 8* = 1. Since the equilibrium price

c 4 7 1 1

(B4) P*(ﬁ70’9):1—|—c(3c+3_2ﬂ_20>+

does not depend on 6, the only candidate for an efficient contract is § = % and p = %c—i— %

The sufficient condition in Assumption 3 is fulfilled if ¢ > 3/16.2 For very low c, this
contract leads to a saddle point instead of a maximum of the seller’s payoff function at

o*. This can be seen by calculating the second derivative for ¢ > ¢*: for small ¢ it
becomes positive.

This example is one in which, once investment is sunk, only one party breaches the
contract. Nevertheless, since the overinvesting party faces hold-up and non-breach con-
tingencies, the equilibrium is efficient if the payoff functions are sufficiently concave. As
the cost function approaches a linear and deterministic one, the first best ceases to be
attainable.

It is not the linearity alone that prevents the price-quantity contracts with expectation
damages from being optimal. If there is a random element in the linear term, such that
always both parties face the risk of breaching, the first best may also be attainable.
Consider the following variant of the preceding example:

(85) Co.t) = (5+0)0
2
(B6) V(5797Q) = (;_2;+91>q_;%-

That is, we set ¢ = 0 and to the contingency we add a new component which makes
marginal cost volatile. The part 6, is a market shock which affects both the buyer’s
valuation and the seller’s cost (which could be opportunity cost). The part 62 only
affects the buyer, and is again uniformly distributed on [1,2]. With regard to 6;, we
assume that it is uniformly distributed on [0, 1]. The efficient quantity is now

(B7) Q*(B,0,0) = ( - — = U> 0s.

Looking for the optimal contract, we get the following equation from the seller’s maxi-
mization problem:

1 1
BS 5— =) (G— Q) doy = ~(Q* —q)do
(B8) /[Q*Sq} (p 2)(61 Q) do; /[Q*>q]2(Q q) df>

2This bound is even lower if the convex investment cost is taken into account.
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One obvious solution is § = 2 and p = 1. All solutions are characterized by

1 (§q _ 2)2
B9 7 _ N4t 7
(59) Pl =5+ 55—
for all gy = % >q > qp = %. The buyer’s payoff fulfills all assumptions. Unfortu-

nately, the condition that characterizes the optimal contract for the buyer becomes quite
complex. As numerical solutions of the two equations we get ¢ = 2.039 and p = 0.8956.

Y



