Homeownership, Community Interactions, and Segregation

Unpublished Appendix: A More General Model of Contracting between a Household and a Real Estate Company

Karla Hoff Arijit Sen

The model presented in the text generates a moral hazard problem for a household in its choice of civic effort, under a host of simplifying specifications. In particular, we have assumed that (*i*) feasible tenure contracts have to be *linear* in the observable outcome – the future price of a home, and that (*ii*) this price is a *deterministic* function of unobservable effort. In what follows, we briefly present a more general model of contracting between a household and a real estate company, and demonstrate that our qualitative results are robust to such generalizations. So consider the following principal-agent model:

A long-lived risk-neutral principal (real estate company) owns a durable good H (housing unit). An agent (household) lives for two periods and benefits from consuming the flow services of H only in the first period. In that period, the agent can put in effort to add value to H, which benefits her *and* increases the future price of H (this price going to the principal). Both players consume a divisible *numeraire* commodity in all periods, and discount the future by $\delta \in (0, 1)$.

The agent's effort (*a*) can be high (*e*) or low (*n*). It is not observable by the principal and so cannot be contracted upon. The agent's current benefit from effort net of cost is [q(a) - a]. The future price of *H* is a random variable *P* distributed on $[0, \infty)$ with a distribution function G(p|a), where G(p|e) firstorder stochastically dominates G(p|n). A feasible contract is a pair { β , $\alpha(p)$ }, where $\beta \in \Re$ is the 'upfront payment' that the agent makes to the principal, and $\alpha(p)$ is the 'rebate' that the principal gives back to the agent in the second period if the realized future price of *H* is *p*. The rebate function $\alpha(p)$ can be any real-valued function, but it is required to satisfy the *limited liability clause*: $\alpha(p) \ge 0$ for all *p*. A contract { β , $\alpha(p)$ } is thus a specific 'complete contract with limited liability' under moral hazard.

Under the contract $\{\beta, \alpha(\cdot)\}$, if the agent (with current income y and future income w) chooses

effort level a and borrows an amount b from the credit market, her utility is:

$$u(a, b; \beta, \alpha(\cdot) | y) = \begin{cases} [y - \beta + b] + [q(a) - a] + \delta \int_0^\infty [w - (1 + r_B)b + \alpha(p)] dG(p | a) & \text{if } y - \beta + b \ge 0, \\ -\infty & \text{otherwise,} \end{cases}$$

where r_B is the borrowing rate which exhibits the following imperfection: $1+r_B > 1/\delta$. The principal's utility is $\pi(a; \beta, \alpha(\cdot)) = \beta + \delta \int [p - \alpha(p)] dG(p|a)$.

Let effort $a^*(\beta, \alpha(\cdot)|y)$ and debt level $b^*(\beta, \alpha(\cdot)|y)$ maximize $u(\cdot|y)$ under a contract $\{\beta, \alpha(\cdot)\}$. Assume the existence of the following 'incentive problem': (*i*) if $\alpha(p) = 0$ for all *p*, then $\alpha^* = n$ for all *y*, and (*ii*) if $\alpha(p) = p$ for all *p*, then $\alpha^* = e$ for all *y*. Assume further that the players have the right to the default rental contract $\{\beta = \rho, \alpha(p) = 0 \forall p\}$. This contract pins down the players' reservation payoffs: for the agent, $u^0(y) = [y - \rho] + [q(n) - n] + \delta w$; and for the principal, $\pi^0 = \rho + \delta \int p.dG(p|n)$.

Consider the model where the agent makes a take-it-or-leave-it contract offer. Here the optimal contract solves the following problem: maximize $u(a, b; \beta, \alpha(\cdot)| y)$ with respect to a, b, β , and $\alpha(\cdot)$, subject to: (*i*) $a = a^*(\beta, \alpha(\cdot)| y)$ and $b = b^*(\beta, \alpha(\cdot)| y)$ [*incentive compatibility*]; (*ii*) $\pi(a^*(\cdot); \beta, \alpha(\cdot)) \ge \pi^0$ [*individual rationality*]; and (*iii*) $\alpha(p) \ge 0$ for all p [*limited liability*].

The solution to the above problem will have the following features. There will exist a threshold income level $y^*(\rho)$ such that, if the agent's current income *y* is less than the threshold, the optimal contract will be the default contract and $a^* = n$; and if $y > y^*$, the optimal contract will generate $a^* = e$.

Thus there will be a wealth effect on incentives. The moral hazard problem will not be 'solved' for all agents (*i.e.*, for all y) due to (*i*) the incentive problem, (*ii*) the agents' desire to smooth consumption, (*iii*) the limited liability clause, and (*iv*) credit market imperfections. A similar result will arise in the alternative model where the principal makes a take-it-or-leave-it contract offer.

The above discussion clarifies the general nature of the moral hazard problem that is embedded in our model. The analysis seems to suggest the necessity of a limited liability clause to generate a wealth effect on incentives. However, consider the following 'extended' model:

The agent lives for three periods, but still consumes *H* only in the first period (and consumes the *numeraire* in all three periods). A feasible contract $\{\beta, \alpha(\cdot)\}$ no longer has to satisfy a limited liability clause (*i.e.*, $\alpha(p)$ can be negative for some *p*). The agent can borrow b_t in period t = 1, 2, under the same terms as before. Here, the agent will be forced to borrow in period 2 if $\alpha(p)$ is a large negative number to ensure non-negative consumption in period 2. Again, when the optimal contract is solved for, we will find a similar wealth effect on incentives. The basic reason for this result is that incentive

payments are *effectively* bounded below because the agent will never accept a contract under which his income in any period will fall below zero.