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A Appendix
1 Representing Social Networks with Random Graphs with Arbitrary Degree
Distributions

Derivatives The probability py is given by the kth derivative of Gy according to:

_ 1d*Gy
Pk = 11 dak

(1)

=0

Moments Moments of the probability distribution can be calculated from the derivative of the generating

function. The mth moment equals:

Sk = (o) o] )

Where the average degree, which I denote by z;, is given by 2z, = Gy (1) = > i Pk and the terminology

(x%)m means repeating m times the operation: differentiate with respect to z and then multiply by .

Powers The distribution of the sum of m independent draws from the probability distribution {py} is
generated by the mth power of the generating function Gy (). For example, if I choose two individuals at
random from the population and sum together the number of friends each person has then the distribution

of this sum is generated by the function [Gy (z)]?. To see this, consider the expansion of [Gy (z)]>

2
Go (2))* = [Zpkxk] 3)
k
= ijpkxch
7,k

popoz’ + (pop1 + p1po) =
+ (pop2 + p1p1 + p2po) ©°
+ (pops + pip2 + pap1 + p3po) &

In this expression the coefficient of the power of z! is the sum of all products pip; such that k435 =1. It is
therefore the probability that the sum of the degrees of the two individuals will be [. This property can be
extended to any power m of the generating function.
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2 Proof of Result 1

Proof. Results for the case of independent valuations and connections is given by both Cohen et. al.(2000)

and Callaway et. al. (2000) which show via different means that the critical percolation g. threshold satisfies

1
qc =
Gi (1)

If one sets g. = 1 — P the expression is then equivalent to F’ (1, pPer it) =1 for the case of independent
valuations. Callaway et. al. also cover the case where the percolation probability is correlated with number
of degrees where the threshold is defined by F’ (17 PC’"”) = 1. In addition, earlier work by Molloy and Reed
(1995) develop an expression for the critical transition for a graph without percolation in terms of the degree

distribution. The result also requires that F’ (1, P) is decreasing in P. This is immediate by noting that

F'(1,P) = W

9F'(1,P)

and 240"} < 0. Finally 220

< 0at F'(1,P) =1 ensures P is unique.

3 Proof of Theorem 1

Proof. Demand is given by equation 14

DP) = (1-P)Yp(1-H(1P)) (4)

1-P)S p
k
=Py e (1-u(P)") (5)

= ( p

where u (P) = H; (1, P) is the smallest non-negative solution to the self consistency condition:

uw(P) = 1-F(1)+F (u(P)) (6)
= P+(1-P)Gi(u(P)) (7)

The following lemma gives some properties of u with respect to the price which will be used to prove the

theorem.
Lemma 1 Suppose u (P) is given by equation 6 then

1. u(P)=1and 2% =0 for P7* < P <1
2. u<1and§—1’§>0for0§P<P”“
3. u(P) is continuous in P

Proof. u (P) is the smallest non-negative solution to:

Zk kprur—1

u=P+(1-P) .
1

(8)

k—1
Now consider the function f (u) = P+(1 — P) E“#fu. First, the solution u = 1 always satisfies the above

relationship. Second, f (u) is a polynomial in u with positive coefficients, thus it is continuous, increasing
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and convex in the region 0 < u < 1 and, given f (0) = P, there is at most one other solution 0 < u < 1.
When f’ (1) <1 there is no solution for 0 < u < 1; and v = 1 is the unique solution. When f’ (1) > 1 there
is a solution for 0 < u < 1. The condition f’(1) < 1 is equivalent to P > P¢it:

k(k—1
= -pZebto e )
1
21
l——4——+7"—"— P 10
NI 1o
Pcrit < P
Therefore, u = 1 for P > P’ and 0 < u < 1 for P < P°"**. Hence, 5—}’; =0for 1> P > perit,
For P < P°rt the derivative 2% is:
dP  1-Gy(u) — (1 —u) G (u)

The numerator is positive for v < 1 and the denominator 1 — G; (u) — (1 — u) G (u) is continuous and equal
to 1l at u = 0, equal to 0 at w = 1 and is decreasing in u for 0 < u < 1 provided G7 (1) > 0. This is a
necessary condition for P°"* > 0. Hence, in the range P € [0, P*"**), u (P) is continuous and 4% > 0. m

Returning to the theorem, I conclude that D(P) = 0 for P € (P, 1] and D(P) = (1 — P) (1 — 3, peu®)
for P € [0, P¢"t). Also, D (P) is a continuous function from the continuity of u in P over these two intervals.
I prove the continuity of D(P) for the entire interval P € [0, 1] by showing that as the price approaches the
critical price from below D — 0. The relationship between P and u may be written:

u—G1 (u)
P (u) = m (12)

such that P (u) is a continuous, monotonically increasing (one to one) function [0,1) — [—1,1]. T will now
show that lim,_,;- P (u) = P". P (1) = 2 so applying L’Hopital’s rule

0
ulir?_ P(u) = ulg{l_ P’ (u) (13)
-G
)
T ) L
E[R?] - E[k]
Pcrit

Now, since P (u) is a one-to-one function and 0 < P’ < 1, this implies that limp_, perie- u = 1 and hence
limp_, perie- D =10

This completes the argument for the continuity of D. The next part of the theorem is:

For P < Pt 4B <

Proof. Consider the expression for % :
dD du
—=—|1- F(1-P) = prkut? 14
P Zk:pku +( ) 75 ijpk u (14)
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The result follows from u < 1 and j—}é >0 for P < P, m
The final element of the proof is:
For P < Perit |54B| > | 2
Proof. The expression for the elasticity is:
PdD P (1-P) du

- = — 1 k k—1 1
DdP _ 1-P +1—2pkudezk:p’““ (15)
k

where the second term inside the brackets is strictly positive, from lemma 1. The result follows immediately.
]

4 Proof of Theorem 2

Proof. Define the fully informed monopoly price as Pj; and the WOM monopoly price as Pjy,on- A

monopolist facing a fully informed population has a strictly concave profit maximization problem and charges

the unique monopoly price Py, = IJQFC provided ¢ < 1. If ¢ > 1 then there is clearly no price where the

monopolist can make positive profits. It is also true that

P— 1
¢ > — for any P > Pp; (16)
P EFI

Theorem 1 proved that |ewon| > |err|, which implies that:

P—c
P EWOM

for any P > P, (17)

when demand is positive in the range of prices P > P > Pj,. The WOM monopolists profit function
(P — ¢) D(P) is continuous and differentiable for P < P, Therefore the first order conditions for the

monopolist are necessary and hence P;“ > Ewl()lw for all P > Py, implies PMo" £ Py, =

5 Proof of Theorem 3

Proof. In a Poisson network:

DP) = (1-P)(1—-explzr(u—1)])=u

dD du 1 —explz (u—1)]

dP ~ dP  1—(1—P)ziexplz (u—1)]
pdD P 1
DdP =~ 1—P1—(1—P)zexplz (u—1)]

Hence, the standard mark-up formula for the optimal price gives:

P —c 1
P+ = _% (18)
= 0P zepln (P a) - 1) (19)
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This is sufficient for profit maximization provided that:
O((1 = P*)z1explz1 (u(P* 21) —1)])
oP
exp[z1 (u(P*,21) —1)] > 0

> 0

|~ expla (u— 1)
1—(1—=P)zrexplz1 (u—1)]
1 —explz (u—1)]

=P s P s e woD] ~ |

—z1explz (w(P*,z1) — D]+ (1= P*)z

which is true when (1 — P*) z; > 1. The condition z; > 1 is sufficient for this to be the case since P* < P

and 1 — Pt = Zi To complete the proof we show
1

d(z1exp [21 (u(21) — 1)])

- <0 (20)
d( eXpEiZle(u — D)) = explzr(u—1D]+ 2z (u—1)explz1 (u—1)] + 5—:1 (z1)” exp [z1 (u — 1)]
= (1 +2(u—1)+ C%Ll (21)2> exp [z1 (u — 1)]
where
du  (u—1)(1—P)exp [z (u—1)]
dz; 1= (1—P)ziexp[z (u—1)] (21)
_ (u—1)(u—P)
1-— z1 (u — P)
substituting this in and dropping exp [z1 (u — 1)] > 0 from the expression:
1+Z1(u—1)+W(21)2 < 0 (22)
1 (u—P)
1—21(1—u)[1—|—1_21( —P:l < 0
1—2z (1—u) [1211 P} < 0
1—2 (u— < z(1—w)
1 < =z (1 — P)

which is true since 1 — P"* = L and for positive demand P* < P". m

6 Proof of Theorem 4

Proof. The appropriate generalization of P°"* for the case of correlation between valuations and friendships
is:

Perit = sup {P|F{ (1, P) = 1}

A sufficient condition for P > 0 is >, %k (k—1) > 1. Suppose that for k > 2 valuations 0 are

uniformly distributed over [0, ] U [8, 1] and no people with & = 1 have valuations in this range. In this case,
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o+ and rewrite the condition as:
—0+c

write gy (6) =

B[k -
[Z]l zl>1+1fa (23)

For any ¢ < § < 1 we can find a distribution such that this condition is satisfied. For instance, suppose

we assume that everyone has the same number of friendships £* conditional on not having £ = 1. The

2
distribution of friendships is therefore p;y = 0 — ¢,px =1 — 60+ ¢ pr = 0 for k # 1,k*. Then % =
(1=0+c)k™ (k* 1)

O—c+(1—-0+c)k* and

(L—0+)k* (k= 1)

k*l—r>nooQ—C+(1—Q+C)k*: (24)
First, I show that demand will be linear in the region P € [c, §]. Consider
D = 1-Hy(1,P) (25)
o amp) (1T (P) (1-u(P)))
dP dP dP
= —(1-u) Z kprar (P)u®~!
In the range of prices P € [c, 0], ‘Zl‘% =0 for k # 1 and dql = —p% for k =1 because all consumers 6 € [c, 0]
have k = 1. Now consider the self consistency relatlonshlp for u (P) :
u=1- e i kprar (1 —u*1) (26)
=

This is independent of ¢;. Thus, j}é =0 for P € [c, 0], 42 96 = — (1 —u),and D (P) is linear. Denote u = u (P)

for P € [c,8]. Consider the first-order condition of the monopolist for P € [c, §]:

dm
5=D(P)~(P=c)(1-u) 27

This is decreasing in P and positive if % > P — c¢. Therefore, the optimal price cannot be less than

or equal to 1€ 5 ) 15¢. We can use the linearity of D (P) for P € [c,0] to write D (1<) =

DO -(1-u ( - %) and substitute this in to get the following condition:

0+ —=>1 (28)

When P > § < u < 1, this can be rewritten using > prgr =1 — 60

S opkar (1-vf)—(1-0)(1-u) > 0 (29)

> prar (w—u*) > 0

This is true for u < 1. Hence, the monopoly price is greater than % ]
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7 Proof of Theorem 5

Proof. In the case of perfect assortativity r = 1 there are two separate populations. In this extreme case no
type is friends with an individual of a different type. As a result, demand can be characterized as the sum
of the demand curves in each population. These may be calculated separately because neither population is
connected to the other. In particular, it is immediate that D (P, 1) > 0, dD(P D —0forPe %9 0|.
It suffices to show that lim,_ - D (P,r) = D (P,1). The primitives are

[ k
Chlon e S ()
0 k
| G3(x1,22) | | Y (%)
i k

Gg (21, 2) 2ok Pk(

G(QJ ($17$2) €I1+( éfe)xZ k
] . Ekpk —

_ . _ Z kpk (9 e)CEl+eCE2 kot
Gi (z1,22) z Lk [
2 ~ k—1
L Gl (zlal’Q) ] Z% Zk kpi (ezﬁ-(i:z—e)wz)

Note that it is equivalent to consider e — 07 rather than r — 1~. Demand is described by the following two

equations
uy (P e) _ min {% 1} + (max {1 — %»0}) % > ok koK <(é—€)u1(P,;)+eu2(P7€)>k1 a
5020 )7 | e 28,0+ (o {12.1]) 2 Dy e (st
_ (9 - e) u1 (P,e) + eus (P, e) *
D(P) = max{@— P,O}Zpk 7 (32)

It is immediate that D is continuous in e, uj, and us in equation 32. It remains to check that wu; (e),us (€)

are continuous in e. In equation 31

| ing || e w
where
uy (P,0) | | min 5,1} + (max{l - 5,0}) = > kpk (ua (P, )"
us (P,0) | max Ijj__g,()} + (mm { 1= g }) 711 S kpr (ug (P, 0))1971 (34)
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Note, that for P € [9, 1], u1 (0) = uy (e) = 1. In this case, the self-consistency condition for us (e) is

k—1
+ usg (P, e)) (35)

P—§ 1-P1 1—uy (Pe
w(Pe)= - LS ke (6(12())

—0 1—-0 =

and usg (€) > uz (0). We need to show that for any us (0) < w < 1, 3e* > 0 such that for 0 < e < e*

P-06 1-P1 1- k-l
x> =+ —— ¥ kpg (M—I—w) (36)
1-0 1-0= 0

Now note that P f) + 11 1; 211 >k kpraz®~1 is continuous, increasing and convex in z,isequalto 1l at x =1 and

for ug (0) < 1 the slope is %?11 Yopk(k—1)pr (uz (0))* 7% < 1. Hence, £=0 —|— 11 193211 >k kv ()" ' <z

for all us (P,0) < z < 1, and we can always choose e so that the condltlon in equatlon 36 is satisfied.
For P € [0, é}

P P\ 1 (é—e)ul(P,e)-l-eug(P,e)
a+<1—é)zlzkkpk< ;

k-1
Zkkj - (eul Pe)+( - e)ug(P,e))

where us (P, e) < uy (Pye),uy (P,e) < uj (P,0) and ug (P, e) > ug (P,0). We need to show that for any z,y
where 0 <y < uy (0), u2 (0) <z < 1, Je* > 0 such that for 0 < e < e*

(37)

P P\ 1 e(w—y)\" "
< = 11— =) — k —_— 38
y 0+( 9>21§k:pk<y+ ; (38)
k—
1 Z ( ey — w)) '
21 1-46
where we note that — pkx an + 7)) = D" T are continuous, increasing and convex
h h 211 wk df 7 1-L 211 ek k=1 i i i d

in z with slopes < 1 at ug (P,0),uy (P,0) respectlvely. Therefore, we find that

P P\ 1
y < é+<1—é>z§ Eppy®~! for all 0 < y < uy (0)
1
i

1
— k:pkxkfl for all us (0) <z < 1
Hence, we can find e* such that conditions in equation 38 are satisfied. m

8 Proof of Theorem 6

Proof. Elasticity is given by

P dD P 1 du dv
o 1 et k k—1,_ 2t R 2t k 2t—1 39
pPyap - 1-p| Tic > Pruko? | dP ; Pratt™ "V F b %; Pht™0 (39)
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du dv

We need to verify > 0 for the proposition to hold. The self consistency condition for u and v is:

dP> dP
Epi.s _
u | | PHA=P)X, zk%p““k to? (40)
= k. _
v P+(1- )Zkt Zkljktp“ ufp=)

Now treating each condition separately, denote the values u; (v, P) that satisfy the first equation and the

values vg (u, P) which satisfy the second. For P < P y; (1,P) < 1,v9(1,P) < 1, d;l} , ‘fi% > 0 and
%, %. If there is more than one solution, the solutions can be ordered from highest to lowest. Also, we are
guaranteed at least one solution by straightforward application of a fixed point theorem on [0,1 — €] x[0,1 — €]
for small € when P < P°". The highest solution has %% < 1 at (u*,v*). If there exists a second highest
solution then dul ‘?;2 > 1. Note that:

%% B (1-P) Zk,t 9 k:lkkjt wk—1y2t=1 (1 _ P) Ek,t kz%uk_lvz(t_l) (a)
- kp.t _ tPk, ¢ _
dv du 1 (1-P)Y,, (k- 1) Bhtgh—20201 — (1 - P) 3, 2 (t — 1) Dtyby2=3

is increasing in u and v. Hence, for a lower solution we would also have %% < 1 which is a contradiction
that the lower point is a solution. Hence any solution (u*,v*) € (0,1) x (0,1) is unique. Finally using the

implicit function theorem on the equations for u, v we find the result:

dv du
sign (dP> = sign <dP) (42)

-(1-P) Zk,t ktiff uF Tty - (1 - Zk,t kflk;;tukilv%)
tp - k 1,20t
1= (1= P)Y,, 2t — 1) Zetyky2i=3 _ (1 Yy 12 1))

— (1= P) Xy bt uF 1200 1 (1= P) Y, (R — 1) Ptyb 2y
tpk kpr .+ _ _
1—(1=-P)Y .2 (t—l) Dhtykp?=8 (1= P)Y, , 22ty 1yl

sign

where the numerator is positive and the denominator is

- |l1-(-P 22 (t— 1) Pkt UPk ¢ Y23 Z kpkt W22t

z
kot 1t kot

Pkt k-1, 2(t—1) kpet -1 2t-1
- |(1-P k—=u"" v 1-P 2t—=—u"" v
S 1-ny
> 0
the final inequality follows from %% <lat (u*v*) m
9 Proof of Theorem 7

Proof. Let v be the probability that an edge of a triad is connected to the giant component then:

v = <P+(1—P)Z§£k (v2)§1> (43)

2

v o= P+(1—P)Z’%(v)’“‘2
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We can compare this to the probability u that a regular friendships is connected to the giant component:

u:P—i—(l—P)Zkz%k(u)k_l (44)

hence v > v and

—-P) (1 _ Zpt (Uz)t> = (1-P) (1 - Zpkvk> (45)
t k
- P) (1 — Zpkvk) < (1-P) (1 — Zpkuk>
k k
Diri  ~  pres

where the first line comes from p, = p; for k = 2t, second line follows from v > u and the third from the
definition of demand. =

10 Proof of Theorem 8

Proof. When the number of friends and valuations are independent we can write demand as:

D(P,w)=(1-P) (1 ~(1=w)Y o (H1 (1~ w7P>>’“> (46)
k
and the elasticity as:
P dD P
Pdb - _ x (47)
bar—— - )( —(1=w) Xy e (Hy (1 - w, P))")
l 1-(1-w) kak(Hl(lfwP))> ]
(1= P) (1 —w) MUz 7 ey (Hy (1 - w, P)*
_ _lfp L (1— P)(1— ) HH1 (=, P) Yo kpr (O (1 = w, P))*!

AP (1= (@) S (1 (1= w, P)))

where the second term inside the brackets is positive. Note:

i (1w p) (100X 2 (i (1 -0, P) )
ap S l-a(l-w)(1-P)y, MU (g (1 - w, P))F?

21

>0 (48)
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We check that there is a unique solution to the first order condition and it is sufficient:

o(1-(1-0) 5, 2 (Hy (1-w,P))F )
1-a(1-w)(1-P) 5, 2Dk (Hy (1-w,P))" 2
o S kpr(Hi(1—w,P)* !

(lf(lfw) >k pk(Hl(lf%P))k)

a(l—(l—w) >k kpy, (Hl(l—va))kil)

olv

o)

o(548) 1 P I+ (1-P)(1-w)
P - 1—P+(1_p)2

+L (1-w) 1—a(1-w)(1-P) 5, BED2E (1, (1-w,P))* 2
1-P NI Dt kpg (Hq (1—w,P))*1
(1-(1—w) X, pr(H1 (1—w,P))*)
dHq
—P(1— -1
(l1-w)a 7P X
—(1=w) 32, 2 (k—1)(H1 (1-w,P))* 2 S, kpr(Hy (1—w,P))* !

I—a(l-w)(1-P) 3, %(Hl(l—w,P))k*Z (1-(1-w) &, pr(H1(1-w,P))*)
(1*(1*w) > Sk (H1(1*w,P))k’1) S kpr (k—1) (Hy (1—w, P))* =2

1—a(1-w)(1-P) 5, "Dk (Hy (1-w,P))* 2 (1-(1—w) Ty p (Hr (1-w.P)F)
+a(1—w) (1= P) Y, BE=E=2ee (g, (1 — 0, P))*
(1-0-) 5 "BE (1w, P ) S ki (Hy (1—w,P))*
(1-a(-w)(1-P) 5, %(Hl(lfwﬁP))k_2)2 (1-(1-w) > pr(Hi (1-w,P)F)
+ (1= w) Yy kpr (Hy (1 —w, P
a(1-(1-w) &, "2 (H1 (1-w,P)* ) S, kpi(Hy (1—w,P))*
1—a(1-w)(1-P) 2, "2k (Hy (1-w,P))*~2 (1-(1-w) 5, pr (H1(1-w,P))* )

< 0
dH,

apP
thus the term —P (1 — w) ozddIf; is o (a2). The first two lines are o («) hence these terms determine the sign

The first two lines are negative. For o small enough the entire term is negative because is linear in «

of the whole expression in the limit of small c. Hence there is a single solution to the first order condition

for the price. A similar condition may be derived for the case of clustering.

i) We want to show that for two networks {p, } and {p}} where z{ > z{ that

a(l—(1-w) S, 2 (7 (1-w, P)r? O (1w PV
. (1--w5, Z}M(_l)(/ ) )H > ki, (HY (1w, P)*! a9
P01~ (1—w) (1= P) S B (i (1= w0, P) 2 (1 (1 ) S (5 (1 - w0 P))F)

o (1 (-0 5 % (1 (-, P)" ) 5, k(Y (1=, P!

> hm 77
P01 a1 —w) (1= P) X, M (B (1= w0, P) 2 (1= (1= w) Do)l (H] (1= w, P))¥)

now lim,_q Hi (1 — w, P) = lim,_0 H{ (1 — w, P) = 1 and noting that

_ (1= (= w) Sy 22 (1 (1 - w0, P ) )
iLmO k(k—1)p k-2 k
L= a(l-w) (1= P) S, M2 (Hy (1= w, P) (1= (1= w) S (Hy (1= w, P)))

=1 (50)

then we can choose « so that the term above is arbitrarily close to 1. When this is the case the more elastic
demand is determined by the term limq—o Y, kpi (H1 (1 — w, Pt = >k kpi which is greater by assump-
tion for {p}}.
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ii) To find the effect of mean-preserving spreads we must consider the effects of second order terms. We can

take a Taylor series approximation at o = 0 to find the relative size of the second order term for small values

of a. Letting

fla) =

kpk

o (1= (1—w) X 2 (u () ) 5, ke (1 (0)

Now

Direct effect %:

Cl-a(l-w) (1= P) S (@) (1= (- @) Syn (u()”)

df 9f  Ofdu

da  da  Ouda

af _ (1 -(1-w)>, kz% (U)k_1> >k ke (u)k*1
Oo d-a(l-w) (- P)S ) (1 (- w) Xy e (0)”)
t-w(-py EEm D (k - VP (-2
k 1
o (1= (1 -w) ¥, b2 () S, ke ()
X 2
(10 —w) (1 P) 5 B ()2 (1= (1 - ) Tee ()
ol -,
Oal,_, !
Indirect effect g—zg—g
_ () S, k(k:ll)pk (u)F—2 S ke (w)h ! T

af du du

uda  “da

where

1—a(1-w)(1-P) 5, XEDPh (u)F =2 (1-(1-w) X, pr(w)")
(1-0-0) 5, 22w ) >y k(k=1)pi (u)* =2
1—a(1-w)(1-P) 5 ED2E (u)F =2 (1-(1-w) 5y i (u)*)
+a (1 —w) (1 - P) 3, M2 (4)F
(1-(1—w) 5o, 22 () 1) > k()

(1-a(i-w)(1-P) 5, HEZD2E ()h=2) " (1= (1-w) Xy pr(w)”)
+ (1 —w) 2 ks (w)*!

kpy,

(17(170.:) , (u)kfl) > kpe (w)F

L g (1—a(i=w)(1-P) £, BED2E ()" =2) (1-(1—w) Sy pe(w)*)” |

u:l—oz(l—P)—l-oz(l—o.))(l—P)Z@uk_1

hence

du
do

du
do

21

(1=P) (1= (1 —w) 5 i2eutt)
1—a(l—w)(1—P)Y EE—bpw -2

21

—w(1—-P)
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and evaluating

of du

— =0 59
ou do a=0 (59)
therefore if
. — 60
do a=0 A ( )
d*f

To consider a mean-preserving spread we must check the second order terms 7-5. We can ignore any terms
that are linear in « as these terms are otherwise finite and are thus zero in the limit a — 0. Ignoring these

terms, the remaining terms are:

—(1—w) 30, B (u)h 2 S ke (w)
L-a(l-w)(1=P) 5, S22k ()2 (1-(1-0) Dy pi()*)
(17(1%)2;, Bk (u)""l) S k(k—1)pg (w)F 2

o (1P oy SO0 ()2 (1=(1-) 1 ()7
_ —\pr k—
Pf o +a(l-w)(1- P)Y, M2 )t 1)
do2  — “da o (1—(1—w)2k Lfl’“(u)’“’l) 3, kp(w)F !

(1-a(i-)(1-P) 5, 2EZD2E ()4=2) " (1=(1-w) Xy pe(w)")
+ (1= w) X2 kpp (u)*
kp _
X <1_(1_“’)Ek EOl 1) >y kpe (W)t 3
(1—a(-w)(1-P) ¥, B2 ()*2) (1-(1-w) Ty pe(w)*)” |

-0y FE P e

k 1
(0 9BEO)
(1-a(-w) (- Py, te (U)H)2 (1= (1= w) Sy ()")

X

4
evaluated at o = 0 and rearranging we find

7(17w)(E[k2]7z1) 2

w

d2f w EZ[IkQ]—zl
@i = ~wa-p) e (62)
(1-w)z ($2)
— W — 2 — 21 (A
L-w( Pz)l(E[H )hﬂ
o 2(1-w) (B [k?] - 21) — 2w (B [E?] —21) —2(1 —w) (21)°
- 0P FO-w) (B[R] - =)
2
371; (1-P) [(E (k2] = 21) (3 — 5w) — 2(1 — w) (zﬂ
a=0

which is increasing in E [k?] when w < 0.6, hence a mean-preserving spread will increase the elasticity and

reduce prices.
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iii) The equations under clustering

v o= 1—oz(l—P)—l—oz(l—w)(l—P)Zkﬂ(v)k*2
k

21

DP) = (1-P) (1 —(1-w) Zpkvk>
k

PdD P dv 3 hpio
P = TP <1+(1—P)(1_w)dp(1(1kw§zkpkvk)>
where
& a (1 -(1-w)>, kz% (v)kd)

AP 1 a(l-w)(1-P) Y, M ()"

z1

Just considering the final term inside the brackets we define:

" (1= (1= w) 5y 2 ()" 7) S k!
fle)= 1—a(l—w)(1—P)Y, MEDee ()F3 (1= (1 - w) o) prv®)
Direct effect %:

o (1= (= w) 5y k2 ()" 7?) S po1
da 1—a(l-w)(l-P)Y, M2 (5)F=5 (1= (1 - w) 32 po*)

+(1-w(1-P)Y ’“(’“;72)” (v)k 3

& 1
) a (1 —(1—w) Y, e (v)k_Q) S et

(1-a(-w) (- P, e @) (- (e mmed

z

Indirect effect %d—”:
v do

(1-w) 32 %UkiS S kprvt T
1—a(1—w)(1-P) &, "2k ph=3 (1-(1-w) Xy, prv*)

(1-(1—w) 5, 22 (0)"2) S, k(k—1)pyo
1—a(1-w)(1-P) 50, S22k (1) =3 (1-(1-w) E, prv*)

of dv dv + (1 —w) Y, prkort

wda  “da (1-(1—w) 52, 22 (0)"2) 5, kpro* !

1—a(1-w)(1-P) 5, B2k (0)F=3 (1—(1-w) 32, prvk)”
+a (1 —w) (1 — P) Y, ME=DE=3pe h—d

(1—(1—w) e ’%’v(u)k*?) S, kpo™
(1mat-w)(-p) 3, Mk oks)* (1-0-0) By piet)

where _q 5 . ( )k—2
dv —(1—w) >, 2 (v
ao = T 0y, T

21
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first order term

of B

dal _, = Zk:kpk (70)
of dv 0
ovdP|,_,

is the same with or without clustering. Now considering the second order terms ignoring any that are linear

in «

(1-w) >, %”k_s >k kpkv"ul
1-a(1-w)(1-P) 5, B2k k=3 (1-(1-w) 3 piv*)

(1-(1-w) X, "2 (0)"2) S, k(k—1)pyo* 2
1—a(1-w)(1=P) ¥, X052k (0)=2 (1=(1-w) 32, provk)
dv + (1 —w) X prkot !
da (1-(1-w) X, "2 (0)"2) kot
1—a(1-w)(1-P) 5, B2k (0)F=3 (1—(1-w) 32, prvk)

to(1—w) (1— P) Y, H=2l=dne h—d

(1_(1_w) Xk kélk (U)k72) g kprot !

(1—a(-w)1-P) &, HEDee gra)® (1-(1-w) Ey piet)

X

+l-w1-P)Y bk =2)pi ks

k 1
(1-a-wx e S kol
(1-a—w - Py, M2 )-2)" (1 =0 dpmet)

21

X

—(1-w) (E[k*] - 221)
= —2(1-Pw + (B k] = 21)
a=0 +(1 —LU) Zl%
+0
+(1—-w)(1-P)(E k] —22)

1
af

da?

(73)

a2 f

<oz (1-P)[(E[k*] —21) (3—5w) —2w(l —w) 2] =3(1 —w) (1 — P)

a=0

the final term —3 (1 — w) (1 — P) z; < 0. The expression is otherwise identical to the case without clustering,

hence clustering results in a higher price. m

11 Proof of Theorem 9

Proof. Assuming a constant cost per unit of advertising o and marginal cost of production ¢, the monopo-
list’s profit is defined by
m(Pw)=(P—¢)(1-Hp(l—w,P))—aw (74)
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In a Poisson network the generating functions are G (z) = G1 (z) = exp (21 (z — 1)); hence the firm’s profit

is given by

7(P,z1) = (P—c¢)D(Pw)—aw (75)
= (1-P)(1-(1-w)exp(—21 (1 - Hi (1 -w,P))))

and the optimal price and level of advertising P*, w* satisfy:

P
dn (P,w) = 0 (76)
ap P=P* w=w*
dr (P,w) 0
dw P=P* w=w* B
D (P",w*)+ (P*—¢) P = 0 (77)
D (P*,w*) aD (P =0)
P P P=P* ,w=w* B P
dD
(P* —c¢) — —a = 0
dw P=P* w=w*
We need to show ( )
o (25 ap
* P=P* w=w*
: 0 78
0 > (78)
P=P* w=w*
since D =1— H; (1 —w, P), we know
H(l-w,P) = P+(1-P)(1l-w)exp(—z1(1 - H; (1 —w,P))) (79)
dHy (1 —w,P) 1-(1-w)exp(—21 (1 —H; (1 —w,P)))
dP (1 -(1-w)(d—P)zrexp(—2 (1 — Hy (1 —w, P))))
df{; = —‘fl—g hence the elasticity of demand with respect to price is
D (P,w)dD (P,w) P 1 (80)
P dP  1-P(U-(1-w)(1-=P)ziexp(—2 (1—H; (1 —w,P))))

_d((1—w)(1=P)z1 exp(—21 (1—H1 (1-w,P)))) )

Holding the price constant, the sign of the derivative w.r.t. w is sign ( o

d(1l-w)(1=P)zrexp(—21 (1 — H; (1 — w, P))))

7o (81)
= —(1-P)zexp(—z (1— Hi (1—w,P)))
+%((1—w) (I=P)zexp(—z (1 - Hi (1 -w, P)))) (82)
< 0
Hence o
2 (P Rl >0 (83)

ow

P=P* w=w*
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demand is less elastic w.r.t. price as advertising increases = price and advertising are complements. m

12 Proof of Theorem 10

Proof. The probability generating function of component sizes an individual with k friends belongs to,

k
conditional on not being in the giant component, is given by (W) . The expected component size is

u u

’ k—1 ’
1+ kHl(lgw’P) (Hl(l*w’P)> =1+ pH10=P) Al the probability a person with & friends is not in the

giant component is u*. Therefore

(1 - kM) uk (84)

k* = arg max
ke{0,1...}

note that for 0 < u < 1 b > 0 the function f (k) = (1 + kb)u” is continuous in k; has a maximum at
f** = maxg>0 {0, — (ﬁ + %)} and f/ (k) > 0 for k < k** and f/ (k) < 0 for k > k**. Hence k* is either
the greatest integer below |k**| or the smallest integer above k**, [k**]. Thus

E* e {|k**],[k*]} for P < Pt (85)

13 Proof of Corollary 1

Proof. We have

M= _<1nu(P)+H; (1—w,P)> (86)

[ (1—P)Gi (u) -
- (hqu(P)Jr(u(P)(l—(l—P)Gll(u))) )

! (1= P) Y kppt 2 -
B (mu(P) i ((z1 —(1=P)> k(k— 1)pkuk—2)> )

where W is finite so immediately limp_, perit ﬁ =00 = limp_, peris kK = 00. Also by definition

21— (1=P)Y k(k—1)ppur=2 >0 for P < P 4 > 0 and (1 — P) > kppu*=2 > 0 for u (P) > 0 so k* is

(1=P) 3~ kppu® 2 1
—(1—P)Zk(k’k—1)pku,k*2) > 0 so —m 1S an upper

continuous in v and hence P for P < P°'*, Finally e

bound on £**. m

14 Proof of Theorem 11

Proof. Demand is given by
1
D=) "m (1—uk)/ ® (0|k) do (87)
= P

where v is the smallest non-negative solution to the self consistency condition:

w=1-F 1)+ F (u) (88)

The following lemma illustrates some properties of u with respect to the price which I will subsequently use
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to prove the above theorem.

Lemma 2 Suppose u (P) is given by the smallest non-negative solution to equation 6 and qx (P) is contin-

wous in P then

1. u(P)=1 and %zOfoertngl
2. u <1 and u(P) is continuous in P for 0 < P < Perit

3. Suppose further that sup;, ‘dqgil(jp)‘ < 00 for all 0 < P < Pt then j—}% exists for all 0 < P < Perit

Proof. 1) u (P) is the smallest non-negative solution to:

u = 1-F (1)+F (u) (89)

1= pha (P)+ Y piar (P)uF™!
k k

let Y (u,P) = 1=, phar (P) + >, phar (P)u*~1. Given the assumptions Y (u, P) is continuous in both
P and w and weakly decreasing and weakly increasing in each respectively. Further it is differentiable and
strictly convex in u for w € [0,1] provided supy ’dq;—}f)' < oo and g (P) > 0 for at least one k > 2. If
Perit < P < 1 then

oo

Z pi (k= 1) g (P) <> pl ar (P) =1 (90)

k=2
which implies that the smallest non-negative solution is v = 1 since Y (u,P) > u for all v < 1 when
perit < p < 1.
2) Consider u (P’) and u (P") where 0 < P’ < P"” < P Given that gx (P) is weakly decreasing and
continuous in P and Y (u, P) is continuous, increasing and convex in u then this implies u (P’) < u (P").
To prove continuity I will show that for any € > 0 such that |u(P’") —u (P")| < & then for P € (P', P’ +0)

1"

where 6 = P/_QP |u(P") —u(P)| < e. Given the definition of § P’ < P < P”. By the intermediate value
theorem we have that Y (u, P) — u = 0 has a solution in the interval u € [u(P’),u (P"”)]. The continuity
of g (P) implies that the following is true T (u, P’) < Y (u, P) and Y (u, P”) > T (u, P) for all u. Hence
T (u(P),P) <u(P) <Y (u(P),P”) implying that u (P') < u(P) < u(P"). We now have the result that
|u(P) —u(P)| <e.

3) To show differentiability consider the implicit relationship for « : u — T (u, P) = 0. Now differentiating

dx
du 4 (91)
dP ‘ZT
Zk / ko(P) (’LL -1 _ 1)
kak( 1) g (P)uk=2
the denominator is positive for P < P’ and the numerator exists provided sup,, dqﬂ’;’i](f) < 00.
For P < perit
> P (k—1)gx (P) < Zpk qr (P7) =1 (92)
k=2

the strictness of the inequality is given by the assumption that for any ¢ > 0 3k > 2 : ¢ (PC”t) <
qr (P — ¢) . Hence u (P) < 1 for P < P,
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Using this lemma we now prove the parts of the main theorem.
1) D (P) is given by

D:%:pk (1—uk)/P ® (0|k) do (93)

which is continuous if u (P) is continuous and ® (0|k) contains no mass points which it does not by assump-
tion.
2) The statement:

D (P)=0 for P > perit

, 94
D(P) >0 for P < perit (04)

follows from u (P) = 1 for P > P" and u (P) < 1 for P < P’ in the earlier lemma and a positive fraction

of individuals with £ > 1 having valuations above the price.

3) 4B is given by:

dP Zpkkuk 1/ O (0]k)do — > " pr (1 —ub) @ (0]k) (95)
k

which is 0 when u (P) = 1 and exists and is decreasing for P < P since 4% > 0 and }_, py, (1 — u*) @ (0|k) df >
0 for u < 1.
4) When 6 and k are uncorrelated ® (k) = 1 and 2% > 1 for P < P and we have

dD d
D Skt (- P) = Y (1- ) (%)
k k

—P)Zpk (1 —uk)

D(P)

therefore
pap__ P
DdP 1-P

(% >k prkut ! 1
Zk Dk (1 - uk)

where % >0. m

References

[1] Cohen, Reuven, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. 2000. “Re-

silence of the Internet to Random Breakdowns.” Physical Review Letters 85(21): 4626-4628.

19



