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1 Representing Social Networks with Random Graphs with Arbitrary Degree
Distributions

Derivatives The probability pk is given by the kth derivative of G0 according to:

pk =
1

k!

dkG0
dxk

����
x=0

(1)

Moments Moments of the probability distribution can be calculated from the derivative of the generating

function. The mth moment equals:

P
k k

mpk =

��
x
d

dx

�m
G0 (x)

�
x=1

(2)

Where the average degree, which I denote by z1, is given by z1 = G
0

0 (1) =
P

k pkk and the terminology�
x d
dx

�m
means repeating m times the operation: di¤erentiate with respect to x and then multiply by x.

Powers The distribution of the sum of m independent draws from the probability distribution fpkg is
generated by the mth power of the generating function G0 (x). For example, if I choose two individuals at

random from the population and sum together the number of friends each person has then the distribution

of this sum is generated by the function [G0 (x)]
2. To see this, consider the expansion of [G0 (x)]

2
:

[G0 (x)]
2
=

"X
k

pkx
k

#2
(3)

=
X
j;k

pjpkx
j+k

= p0p0x
0 + (p0p1 + p1p0)x

1

+(p0p2 + p1p1 + p2p0)x
2

+(p0p3 + p1p2 + p2p1 + p3p0)x
3:::

In this expression the coe¢ cient of the power of xl is the sum of all products pkpj such that k + j = l. It is

therefore the probability that the sum of the degrees of the two individuals will be l. This property can be

extended to any power m of the generating function.
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2 Proof of Result 1

Proof. Results for the case of independent valuations and connections is given by both Cohen et. al.(2000)
and Callaway et. al. (2000) which show via di¤erent means that the critical percolation qc threshold satis�es

qc =
1

G01 (1)

If one sets qc = 1 � P crit, the expression is then equivalent to F 0
�
1; P crit

�
= 1 for the case of independent

valuations. Callaway et. al. also cover the case where the percolation probability is correlated with number

of degrees where the threshold is de�ned by F 0
�
1; P crit

�
= 1. In addition, earlier work by Molloy and Reed

(1995) develop an expression for the critical transition for a graph without percolation in terms of the degree

distribution. The result also requires that F 0 (1; P ) is decreasing in P . This is immediate by noting that

F 0 (1; P ) =

P
k kpkqk (P )P

k kpk

and dqk(P )
dP � 0: Finally @F 0(1;P )

@P < 0 at F 0 (1; P ) = 1 ensures P crit is unique.

3 Proof of Theorem 1

Proof. Demand is given by equation 14

D(P ) = (1� P )
P
k

pk

�
1�H1 (1; P )k

�
(4)

= (1� P )
P
k

pk

�
1� u (P )k

�
(5)

where u (P ) = H1 (1; P ) is the smallest non-negative solution to the self consistency condition:

u (P ) = 1� F1 (1) + F1 (u (P )) (6)

= P + (1� P )G1 (u (P )) (7)

The following lemma gives some properties of u with respect to the price which will be used to prove the

theorem.

Lemma 1 Suppose u (P ) is given by equation 6 then

1. u (P ) = 1 and du
dP = 0 for P

crit � P � 1

2. u < 1 and du
dP > 0 for 0 � P < P

crit

3. u (P ) is continuous in P

Proof. u (P ) is the smallest non-negative solution to:

u = P + (1� P )
P

k kpku
k�1

z1
(8)

Now consider the function f (u) = P+(1� P )
P

k
kpku

k�1

z1
. First, the solution u = 1 always satis�es the above

relationship. Second, f (u) is a polynomial in u with positive coe¢ cients, thus it is continuous, increasing
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and convex in the region 0 � u � 1 and, given f (0) = P , there is at most one other solution 0 � u < 1.
When f 0 (1) � 1 there is no solution for 0 � u < 1; and u = 1 is the unique solution. When f 0 (1) > 1 there
is a solution for 0 � u < 1: The condition f 0 (1) � 1 is equivalent to P > P crit:

f 0 (1) = (1� P )
P

k k (k � 1) pk
z1

� 1 (9)

1� z1P
k k (k � 1) pk

� P (10)

P crit � P

Therefore, u = 1 for P � P crit and 0 � u < 1 for P < P crit. Hence, dudP = 0 for 1 � P � P
crit:

For P < P crit the derivative du
dP is:

du

dP
=

(1�G1 (u))2

1�G1 (u)� (1� u)G01 (u)
(11)

The numerator is positive for u < 1 and the denominator 1�G1 (u)� (1� u)G01 (u) is continuous and equal
to 1 at u = 0, equal to 0 at u = 1 and is decreasing in u for 0 � u � 1 provided G001 (1) > 0. This is a

necessary condition for P crit > 0. Hence, in the range P 2 [0; P crit), u (P ) is continuous and du
dP > 0:

Returning to the theorem, I conclude thatD(P ) = 0 for P 2 (P crit; 1] andD(P ) = (1� P )
�
1�

P
k pku

k
�

for P 2 [0; P crit). Also, D (P ) is a continuous function from the continuity of u in P over these two intervals.
I prove the continuity of D(P ) for the entire interval P 2 [0; 1] by showing that as the price approaches the
critical price from below D ! 0. The relationship between P and u may be written:

P (u) =
u�G1 (u)
1�G1 (u)

(12)

such that P (u) is a continuous, monotonically increasing (one to one) function [0; 1) ! [�1; 1]: I will now
show that limu!1� P (u) = P

crit. P (1) = 0
0 so applying L�Hopital�s rule

lim
u!1�

P (u) = lim
u!1�

P 0 (u) (13)

=
1�G01 (1)
G01 (1)

= 1� E [k]

E [k2]� E [k]
= P crit

Now, since P (u) is a one-to-one function and 0 < P crit < 1, this implies that limP!P crit� u = 1 and hence

limP!P crit� D = 0

This completes the argument for the continuity of D. The next part of the theorem is:

For P < P crit dD
dP < 0

Proof. Consider the expression for dD
dP :

dD

dP
= �

�
1�

P
k

pku
k + (1� P ) du

dP

P
k

pkku
k�1
�

(14)
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The result follows from u < 1 and du
dP > 0 for P < P

crit:

The �nal element of the proof is:

For P < P crit
��P
D
dD
dP

�� > ��� P
1�P

���
Proof. The expression for the elasticity is:

P

D

dD

dP
= � P

1� P

241 + (1� P )
1�

P
k

pkuk
du

dP

P
k

pkku
k�1

35 (15)

where the second term inside the brackets is strictly positive, from lemma 1. The result follows immediately.

4 Proof of Theorem 2

Proof. De�ne the fully informed monopoly price as P �FI and the WOM monopoly price as P �WOM . A

monopolist facing a fully informed population has a strictly concave pro�t maximization problem and charges

the unique monopoly price P �FI =
1+c
2 provided c < 1. If c � 1 then there is clearly no price where the

monopolist can make positive pro�ts. It is also true that

P � c
P

� 1

"FI
for any P � P �FI (16)

Theorem 1 proved that j"WOM j > j"FI j, which implies that:

P � c
P

>
1

"WOM
for any P � P �FI (17)

when demand is positive in the range of prices P crit > P � P �FI : The WOM monopolists pro�t function

(P � c)D(P ) is continuous and di¤erentiable for P < P crit. Therefore the �rst order conditions for the

monopolist are necessary and hence P�c
P > 1

"WOM
for all P � P �FI implies PMon � P �FI .

5 Proof of Theorem 3

Proof. In a Poisson network:

D (P ) = (1� P ) (1� exp [z1 (u� 1)]) = u
dD

dP
= � du

dP
=

1� exp [z1 (u� 1)]
1� (1� P ) z1 exp [z1 (u� 1)]

P

D

dD

dP
= � P

1� P
1

1� (1� P ) z1 exp [z1 (u� 1)]

Hence, the standard mark-up formula for the optimal price gives:

P � � c
P �

= � 1
P
D
dD
dP

(18)

=
1� P �
P �

(1� (1� P �) z1 exp [z1 (u (P �; z1)� 1)]) (19)
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This is su¢ cient for pro�t maximization provided that:

@ ((1� P �) z1 exp [z1 (u (P �; z1)� 1)])
@P

> 0

�z1 exp [z1 (u (P �; z1)� 1)] + (1� P �) z1
1� exp [z1 (u� 1)]

1� (1� P ) z1 exp [z1 (u� 1)]
exp [z1 (u (P

�; z1)� 1)] > 0

(1� P �) z1
1� exp [z1 (u� 1)]

1� (1� P ) z1 exp [z1 (u� 1)]
> 1

which is true when (1� P �) z1 > 1. The condition z1 > 1 is su¢ cient for this to be the case since P � < P crit

and 1� P crit = 1
z1
. To complete the proof we show

d(z1 exp [z1 (u (z1)� 1)])
dz1

< 0 (20)

d(z1 exp [z1 (u� 1)])
dz1

= exp [z1 (u� 1)] + z1 (u� 1) exp [z1 (u� 1)] +
du

dz1
(z1)

2
exp [z1 (u� 1)]

=

�
1 + z1 (u� 1) +

du

dz1
(z1)

2

�
exp [z1 (u� 1)]

where

du

dz1
=

(u� 1) (1� P ) exp [z1 (u� 1)]
1� (1� P ) z1 exp [z1 (u� 1)]

(21)

=
(u� 1) (u� P )
1� z1 (u� P )

substituting this in and dropping exp [z1 (u� 1)] > 0 from the expression:

1 + z1 (u� 1) +
(u� 1) (u� P )
1� z1 (u� P )

(z1)
2
< 0 (22)

1� z1 (1� u)
�
1 +

z1 (u� P )
1� z1 (u� P )

�
< 0

1� z1 (1� u)
�

1

1� z1 (u� P )

�
< 0

1� z1 (u� P ) < z1 (1� u)
1 < z1 (1� P )

which is true since 1� P crit = 1
z1
and for positive demand P � < P crit:

6 Proof of Theorem 4

Proof. The appropriate generalization of P crit for the case of correlation between valuations and friendships
is:

P crit = sup fP jF 01 (1; P ) = 1g

A su¢ cient condition for P crit > � is
P

k
pkqk(�)
z1

k (k � 1) > 1. Suppose that for k � 2 valuations � are

uniformly distributed over [0; c][ [�; 1] and no people with k = 1 have valuations in this range. In this case,
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write qk (�) =
1��
1��+c and rewrite the condition as:

E
�
k2
�
� z1

z1
> 1 +

c

1� � (23)

For any c < � < 1 we can �nd a distribution such that this condition is satis�ed. For instance, suppose

we assume that everyone has the same number of friendships k� conditional on not having k = 1. The

distribution of friendships is therefore p1 = � � c; pk� = 1 � � + c pk = 0 for k 6= 1; k�: Then
E[k2]�z1

z1
=

(1��+c)k�(k��1)
��c+(1��+c)k� and

lim
k�!1

(1� � + c) k� (k� � 1)
� � c+ (1� � + c) k� =1: (24)

First, I show that demand will be linear in the region P 2 [c; �]. Consider

D = 1�H0 (1; P ) (25)

dD

dP
= �dH0 (1; P )

dP
= �

d
�
1�

P
pkqk (P )

�
1� u (P )k

��
dP

= � (1� u) + du

dP

X
kpkqk (P )u

k�1

In the range of prices P 2 [c; �] ; dqkdP = 0 for k 6= 1 and dq1
dP = � 1

p1
for k = 1 because all consumers � 2 [c; �]

have k = 1. Now consider the self consistency relationship for u (P ) :

u = 1� 1

z1

1X
k=2

kpkqk
�
1� uk�1

�
(26)

This is independent of q1. Thus, dudP = 0 for P 2 [c; �],
dD
dP = � (1� u), and D (P ) is linear. Denote u = u (P )

for P 2 [c; �]. Consider the �rst-order condition of the monopolist for P 2 [c; �]:

d�

dP
= D (P )� (P � c) (1� u) (27)

This is decreasing in P and positive if D(P )
1�u > P � c. Therefore, the optimal price cannot be less than

or equal to 1+c
2 if

D( 1+c2 )
1�u > 1�c

2 . We can use the linearity of D (P ) for P 2 [c; �] to write D
�
1+c
2

�
=

D (�)� (1� u)
�
� � 1�c

2

�
and substitute this in to get the following condition:

� +
D (�)

1� u > 1 (28)

When P crit > � , u < 1; this can be rewritten using
P
pkqk = 1� �X

pkqk
�
1� uk

�
� (1� �) (1� u) > 0 (29)X
pkqk

�
u� uk

�
> 0

This is true for u < 1. Hence, the monopoly price is greater than 1+c
2 .
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7 Proof of Theorem 5

Proof. In the case of perfect assortativity r = 1 there are two separate populations. In this extreme case no
type is friends with an individual of a di¤erent type. As a result, demand can be characterized as the sum

of the demand curves in each population. These may be calculated separately because neither population is

connected to the other. In particular, it is immediate that D (P; 1) > 0; dD(P;1)dP = 0 for P 2
h

E[k]
E[k2]�E[k]

~�; ~�
i
.

It su¢ ces to show that limr!1� D (P; r) = D (P; 1). The primitives are

"
G10 (x1; x2)

G20 (x1; x2)

#
=

264 Pk pk

�
e11x1+e12x2
e11+e12

�k
P

k pk

�
e21x1+e22x2
e21+e22

�k
375 (30)

"
G10 (x1; x2)

G20 (x1; x2)

#
=

2664
P

k pk

�
(~��e)x1+ex2

~�

�k
P

k pk

�
ex1+(1�~��e)x2

1�~�

�k
3775

"
G11 (x1; x2)

G21 (x1; x2)

#
=

2664
1
z1

P
k kpk

�
(~��e)x1+ex2

~�

�k�1
1
z1

P
k kpk

�
ex1+(1�~��e)x2

1�~�

�k�1
3775

Note that it is equivalent to consider e! 0+ rather than r ! 1�: Demand is described by the following two

equations

"
u1 (P; e)

u2 (P; e)

#
=

2664 min
n
P
~�
; 1
o
+
�
max

n
1� P

~�
; 0
o�

1
z1

P
k kpk

�
(~��e)u1(P;e)+eu2(P;e)

~�

�k�1
max

n
P�~�
1�~� ; 0

o
+
�
min

n
1�P
1�~� ; 1

o�
1
z1

P
k kpk

�
eu1(P;e)+(1�~��e)u2(P;e)

1�~�

�k�1
3775 (31)

D (P ) = max
n
~� � P; 0

oX
k

pk

0@
�
~� � e

�
u1 (P; e) + eu2 (P; e)

~�

1Ak

(32)

+
�
min

n
1� P; 1� ~�

o�X
k

pk

0@eu1 (P; e) +
�
1� ~� � e

�
u2 (P; e)

1� ~�

1Ak

It is immediate that D is continuous in e, u1, and u2 in equation 32. It remains to check that u1 (e),u2 (e)

are continuous in e. In equation 31

lim
e!0

"
u1 (P; e)

u2 (P; e)

#
=

"
u1 (P; 0)

u2 (P; 0)

#
(33)

where "
u1 (P; 0)

u2 (P; 0)

#
=

24 min
n
P
~�
; 1
o
+
�
max

n
1� P

~�
; 0
o�

1
z1

P
k kpk (u1 (P; 0))

k�1

max
n
P�~�
1�~� ; 0

o
+
�
min

n
1�P
1�~� ; 1

o�
1
z1

P
k kpk (u2 (P; 0))

k�1

35 (34)

App. 7



Note, that for P 2
h
~�; 1
i
, u1 (0) = u1 (e) = 1: In this case, the self-consistency condition for u2 (e) is

u2 (P; e) =
P � ~�
1� ~�

+
1� P
1� ~�

1

z1

X
k

kpk

�
e (1� u2 (P; e))

1� ~�
+ u2 (P; e)

�k�1
(35)

and u2 (e) > u2 (0). We need to show that for any u2 (0) < w < 1; 9e� > 0 such that for 0 < e < e�

x >
P � ~�
1� ~�

+
1� P
1� ~�

1

z1

X
k

kpk

�
e (1� w)
1� ~�

+ w

�k�1
(36)

Now note that P�
~�

1�~� +
1�P
1�~�

1
z1

P
k kpkx

k�1 is continuous, increasing and convex in x, is equal to 1 at x = 1 and

for u2 (0) < 1 the slope is 1�P
1�~�

1
z1

P
k k (k � 1) pk (u2 (0))

k�2
< 1. Hence, P�

~�
1�~� +

1�P
1�~�

1
z1

P
k kpk (x)

k�1
< x

for all u2 (P; 0) < x < 1, and we can always choose e so that the condition in equation 36 is satis�ed.

For P 2
h
0; ~�
i

"
u1 (P; e)

u2 (P; e)

#
=

P
~�
+
�
1� P

~�

�
1
z1

P
k kpk

�
(~��e)u1(P;e)+eu2(P;e)

~�

�k�1
1
z1

P
k kpk

�
eu1(P;e)+(1�~��e)u2(P;e)

1�~�

�k�1 (37)

where u2 (P; e) < u1 (P; e) ; u1 (P; e) < u1 (P; 0) and u2 (P; e) > u2 (P; 0) : We need to show that for any x; y

where 0 < y < u1 (0) ; u2 (0) < x < 1; 9e� > 0 such that for 0 < e < e�

y <
P
~�
+

�
1� P

~�

�
1

z1

X
k

kpk

�
y +

e (w � y)
~�

�k�1
(38)

x >
1

z1

X
k

kpk

�
w +

e (y � w)
1� ~�

�k�1

where we note that 1
z1

P
k kpkx

k�1 and P
~�
+
�
1� P

~�

�
1
z1

P
k kpkx

k�1 are continuous, increasing and convex

in x with slopes < 1 at u2 (P; 0) ; u1 (P; 0) respectively. Therefore, we �nd that

y <
P
~�
+

�
1� P

~�

�
1

z1

X
k

kpky
k�1 for all 0 < y < u1 (0)

x >
1

z1

X
k

kpkx
k�1 for all u2 (0) < x < 1

Hence, we can �nd e� such that conditions in equation 38 are satis�ed.

8 Proof of Theorem 6

Proof. Elasticity is given by

P

D (P )

dD

dP
= � P

1� P

241 + 1

1�
P

k;t pk;tu
kv2t

0@ du
dP

X
k;t

kpk;tu
k�1v2t +

dv

dP

X
k;t

2tpk;tu
kv2t�1

1A35 (39)
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We need to verify du
dP ;

dv
dP > 0 for the proposition to hold. The self consistency condition for u and v is:"

u

v

#
=

24 P + (1� P )
P

k;t
kpk;tP
k;t kpk;t

uk�1v2t

P + (1� P )
P

k;t
tpk;tP
k;t tpk;t

ukv2(t�1)

35 (40)

Now treating each condition separately, denote the values u1 (v; P ) that satisfy the �rst equation and the

values v2 (u; P ) which satisfy the second. For P < P crit u1 (1; P ) < 1; v2 (1; P ) < 1, du1
dv ;

dv2
du > 0 and

du1
dv ;

dv2
du . If there is more than one solution, the solutions can be ordered from highest to lowest. Also, we are

guaranteed at least one solution by straightforward application of a �xed point theorem on [0; 1� "]�[0; 1� "]
for small " when P < P crit. The highest solution has du1dv

dv2
du < 1 at (u

�; v�). If there exists a second highest

solution then du1
dv

dv2
du � 1. Note that:

du1
dv

dv2
du

=
(1� P )

P
k;t 2t

kpk;t
z1k

uk�1v2t�1

1� (1� P )
P

k;t (k � 1)
kpk;t
z1k

uk�2v2t

(1� P )
P

k;t k
tpk;t
z1t
uk�1v2(t�1)

1� (1� P )
P

k;t 2 (t� 1)
tpk;t
z1t
ukv2t�3

(41)

is increasing in u and v. Hence, for a lower solution we would also have du1
dv

dv2
du < 1 which is a contradiction

that the lower point is a solution. Hence any solution (u�; v�) 2 (0; 1) � (0; 1) is unique. Finally using the
implicit function theorem on the equations for u; v we �nd the result:

sign

�
dv

dP

�
= sign

�
du

dP

�
(42)

= sign

0BBBBBB@
�

������ � (1� P )
P

k;t k
tpk;t
z1t
uk�1v2(t�1) �

�
1�

P
k;t

kpk;t
z1k

uk�1v2t
�

1� (1� P )
P

k;t 2 (t� 1)
tpk;t
z1t
ukv2t�3 �

�
1�

P
k;t

kpk;t
z1k

uk�1v2(t�1)
� ����������� � (1� P )

P
k;t k

tpk;t
z1t
uk�1v2(t�1) 1� (1� P )

P
k;t (k � 1)

kpk;t
z1k

uk�2v2t

1� (1� P )
P

k;t 2 (t� 1)
tpk;t
z1t
ukv2t�3 � (1� P )

P
k;t 2t

kpk;t
z1k

uk�1v2t�1

�����

1CCCCCCA
where the numerator is positive and the denominator is

=

241� (1� P )X
k;t

2 (t� 1) tpk;t
z1t

ukv2t�3

35241� (1� P )X
k;t

(k � 1) kpk;t
z1k

uk�2v2t

35
�

24(1� P )X
k;t

k
tpk;t
z1t

uk�1v2(t�1)

3524(1� P )X
k;t

2t
kpk;t
z1k

uk�1v2t�1

35
> 0

the �nal inequality follows from du1
dv

dv2
du < 1 at (u

�; v�)

9 Proof of Theorem 7

Proof. Let v be the probability that an edge of a triad is connected to the giant component then:

v2 =

 
P + (1� P )

X k
2pk
z1
2

�
v2
� k
2�1
!2

(43)

v = P + (1� P )
X kpk

z1
(v)

k�2
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We can compare this to the probability u that a regular friendships is connected to the giant component:

u = P + (1� P )
X kpk

z1
(u)

k�1 (44)

hence v > u and

(1� P )
 
1�

X
t

pt
�
v2
�t!

= (1� P )
 
1�

X
k

pkv
k

!
(45)

(1� P )
 
1�

X
k

pkv
k

!
< (1� P )

 
1�

X
k

pku
k

!
Dtri < Dreg

where the �rst line comes from pk = pt for k = 2t, second line follows from v > u and the third from the

de�nition of demand.

10 Proof of Theorem 8

Proof. When the number of friends and valuations are independent we can write demand as:

D (P; !) = (1� P )
 
1� (1� !)

X
k

pk (H1 (1� !; P ))k
!

(46)

and the elasticity as:

P

D

dD

dP
=

P

(1� P )
�
1� (1� !)

P
k pk (H1 (1� !; P ))

k
� � (47)

"
�
�
1� (1� !)

P
k pk (H1 (1� !; P ))

k
�

� (1� P ) (1� !) dH1(1�!;P )
dP

P
k kpk (H1 (1� !; P ))

k�1

#

= � P

1� P

241 + (1� P ) (1� !) dH1 (1� !; P )
dP

P
k kpk (H1 (1� !; P ))

k�1�
1� (1� !)

P
k pk (H1 (1� !; P ))

k
�
35

where the second term inside the brackets is positive. Note:

dH1 (1� !; P )
dP

=
�
�
1� (1� !)

P
k
kpk
z1
(H1 (1� !; P ))k�1

�
1� � (1� !) (1� P )

P
k
k(k�1)pk

z1
(H1 (1� !; P ))k�2

> 0 (48)
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We check that there is a unique solution to the �rst order condition and it is su¢ cient:

@
�
P
D
dD
dP

�
@P

= �
 

1

1� P +
P

(1� P )2

!264 1 + (1� P ) (1� !)
�
�
1�(1�!)

P
k

kpk
z1

(H1(1�!;P ))k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(H1(1�!;P ))k�2

�
P

k kpk(H1(1�!;P ))k�1

(1�(1�!)
P

k pk(H1(1�!;P ))k)

375

+
P

1� P

264 (1� !)
�
�
1�(1�!)

P
k

kpk
z1

(H1(1�!;P ))k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(H1(1�!;P ))k�2

�
P

k kpk(H1(1�!;P ))k�1

(1�(1�!)
P

k pk(H1(1�!;P ))k)

375
�P (1� !)�dH1

dP
�266666666666666664

�(1�!)
P

k

kpk
z1

(k�1)(H1(1�!;P ))k�2

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(H1(1�!;P ))k�2

P
k kpk(H1(1�!;P ))k�1

(1�(1�!)
P

k pk(H1(1�!;P ))k)

+

�
1�(1�!)

P
k

kpk
z1

(H1(1�!;P ))k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(H1(1�!;P ))k�2

P
k kpk(k�1)(H1(1�!;P ))k�2

(1�(1�!)
P

k pk(H1(1�!;P ))k)

+� (1� !) (1� P )
P

k
k(k�1)(k�2)pk

z1
(H1 (1� !; P ))k�3

�
�
1�(1�!)

P
k

kpk
z1

(H1(1�!;P ))k�1
�

�
1��(1�!)(1�P )

P
k

k(k�1)pk
z1

(H1(1�!;P ))k�2
�2 P

k kpk(H1(1�!;P ))k�1

(1�(1�!)
P

k pk(H1(1�!;P ))k)

+ (1� !)
P

k kpk (H1 (1� !; P ))
k�1

�
�
�
1�(1�!)

P
k

kpk
z1

(H1(1�!;P ))k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(H1(1�!;P ))k�2

P
k kpk(H1(1�!;P ))k�1

(1�(1�!)
P

k pk(H1(1�!;P ))k)
2

377777777777777775
< 0

The �rst two lines are negative. For � small enough the entire term is negative because dH1

dP is linear in �

thus the term �P (1� !)�dH1

dP is o
�
�2
�
. The �rst two lines are o (�) hence these terms determine the sign

of the whole expression in the limit of small �. Hence there is a single solution to the �rst order condition

for the price. A similar condition may be derived for the case of clustering.

i) We want to show that for two networks fp0kg and fp00kg where z01 > z001 that

lim
�!0

�
�
1� (1� !)

P
k
kp0k
z01
(H 0

1 (1� !; P ))
k�1
�

1� � (1� !) (1� P )
P

k
k(k�1)p0k

z01
(H 0

1 (1� !; P ))
k�2

P
k kp

0
k (H

0
1 (1� !; P ))

k�1�
1� (1� !)

P
k p

0
k (H

0
1 (1� !; P ))

k
�(49)

> lim
�!0

�
�
1� (1� !)

P
k
kp00k
z001
(H 00

1 (1� !; P ))
k�1
�

1� � (1� !) (1� P )
P

k
k(k�1)p00k

z001
(H 00

1 (1� !; P ))
k�2

P
k kp

00
k (H

00
1 (1� !; P ))

k�1�
1� (1� !)

P
k p

00
k (H

00
1 (1� !; P ))

k
�

now lim�!0H
0
1 (1� !; P ) = lim�!0H

00
1 (1� !; P ) = 1 and noting that

lim
�!0

�
1� (1� !)

P
k
kpk
z1
(H1 (1� !; P ))k�1

�
1� � (1� !) (1� P )

P
k
k(k�1)pk

z1
(H1 (1� !; P ))k�2

1�
1� (1� !)

P
k pk (H1 (1� !; P ))

k
� = 1 (50)

then we can choose � so that the term above is arbitrarily close to 1: When this is the case the more elastic

demand is determined by the term lim�!0

P
k kpk (H1 (1� !; P ))

k�1
=
P

k kpk which is greater by assump-

tion for fp0kg.
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ii) To �nd the e¤ect of mean-preserving spreads we must consider the e¤ects of second order terms. We can

take a Taylor series approximation at � = 0 to �nd the relative size of the second order term for small values

of �: Letting

f (�) =
�
�
1� (1� !)

P
k
kpk
z1
(u (�))

k�1
�

1� � (1� !) (1� P )
P

k
k(k�1)pk

z1
(u (�))

k�2

P
k kpk (u (�))

k�1�
1� (1� !)

P
k pk (u (�))

k
� (51)

Now
df

d�
=
@f

@�
+
@f

@u

du

d�
(52)

Direct e¤ect @f
@� :

@f

@�
=

�
1� (1� !)

P
k
kpk
z1
(u)

k�1
�

1� � (1� !) (1� P )
P

k
k(k�1)pk

z1
(u)

k�2

P
k kpk (u)

k�1�
1� (1� !)

P
k pk (u)

k
� (53)

+(1� !) (1� P )
X
k

k (k � 1) pk
z1

(u)
k�2

�
�
�
1� (1� !)

P
k
kpk
z1
(u)

k�1
�

�
1� � (1� !) (1� P )

P
k
k(k�1)pk

z1
(u)

k�2
�2 P

k kpk (u)
k�1�

1� (1� !)
P

k pk (u)
k
� (54)

@f

@�

����
�=0

= z1 (55)

Indirect e¤ect @f
@u

du
d�

@f

@u

du

d�
= �

du

d�

266666666666666664

�(1�!)
P

k

k(k�1)pk
z1

(u)k�2

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(u)k�2

P
k kpk(u)

k�1

(1�(1�!)
P

k pk(u)
k)

+

�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(u)k�2

P
k k(k�1)pk(u)

k�2

(1�(1�!)
P

k pk(u)
k)

+� (1� !) (1� P )
P

k
k(k�1)(k�2)pk

z1
(u)

k�3

�
�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

�
1��(1�!)(1�P )

P
k

k(k�1)pk
z1

(u)k�2
�2 P

k kpk(u)
k�1

(1�(1�!)
P

k pk(u)
k)

+ (1� !)
P

k kpk (u)
k�1

�
�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

�
1��(1�!)(1�P )

P
k

k(k�1)pk
z1

(u)k�2
� P

k kpk(u)
k�1

(1�(1�!)
P

k pk(u)
k)

2

377777777777777775
(56)

where

u = 1� � (1� P ) + � (1� !) (1� P )
X kpk

z1
uk�1 (57)

hence

du

d�
= �

(1� P )
�
1� (1� !)

P kpk
z1
uk�1

�
1� � (1� !) (1� P )

P k(k�1)pk
z1

uk�2
(58)

du

d�

����
�=0

= �! (1� P )
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and evaluating
@f

@u

du

d� �=0
= 0 (59)

therefore
df

d� �=0
= z1 (60)

To consider a mean-preserving spread we must check the second order terms d2f
d�2 : We can ignore any terms

that are linear in � as these terms are otherwise �nite and are thus zero in the limit �! 0. Ignoring these

terms, the remaining terms are:

d2f

d�2
= 2

du

d�

266666666666666664

�(1�!)
P

k

k(k�1)pk
z1

(u)k�2

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(u)k�2

P
k kpk(u)

k�1

(1�(1�!)
P

k pk(u)
k)

+

�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

1��(1�!)(1�P )
P

k

k(k�1)pk
z1

(u)k�2

P
k k(k�1)pk(u)

k�2

(1�(1�!)
P

k pk(u)
k)

+� (1� !) (1� P )
P

k
k(k�1)(k�2)pk

z1
(u)

k�3

�
�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

�
1��(1�!)(1�P )

P
k

k(k�1)pk
z1

(u)k�2
�2 P

k kpk(u)
k�1

(1�(1�!)
P

k pk(u)
k)

+ (1� !)
P

k kpk (u)
k�1

�
�
1�(1�!)

P
k

kpk
z1

(u)k�1
�

�
1��(1�!)(1�P )

P
k

k(k�1)pk
z1

(u)k�2
� P

k kpk(u)
k�1

(1�(1�!)
P

k pk(u)
k)

2

377777777777777775
(61)

+(1� !) (1� P )
X
k

k (k � 1) pk
z1

(u)
k�2

�

�
1� (1� !)

P
k
kpk
z1
(u)

k�1
�

�
1� � (1� !) (1� P )

P
k
k(k�1)pk

z1
(u)

k�2
�2 P

k kpk (u)
k�1�

1� (1� !)
P

k pk (u)
k
�

evaluated at � = 0 and rearranging we �nd

d2f

d�2

����
�=0

= �2! (1� P )

266664
�(1�!)(E[k2]�z1)

z1
z1
!

!
1

E[k2]�z1
!

0

(1� !) z1
�
!
1
z1
!2

�

377775 (62)

+
(1� !) (1� P )

�
E
�
k2
�
� z1

�
z1

h!
1

z1
!

i
= (1� P )

"
2 (1� !)

�
E
�
k2
�
� z1

�
� 2!

�
E
�
k2
�
� z1

�
� 2 (1� !) (z1)2

+(1� !)
�
E
�
k2
�
� z1

� #
d2f

d�2

����
�=0

= (1� P )
h�
E
�
k2
�
� z1

�
(3� 5!)� 2 (1� !) (z1)2

i
which is increasing in E

�
k2
�
when ! < 0:6; hence a mean-preserving spread will increase the elasticity and

reduce prices.
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iii) The equations under clustering

v = 1� � (1� P ) + � (1� !) (1� P )
X
k

kpk
z1

(v)
k�2 (63)

D(P ) = (1� P )
 
1� (1� !)

X
k

pkv
k

!
P

D

dD

dP
= � P

1� P

�
1 + (1� P ) (1� !) dv

dP

P
k kpkv

k�1

(1� (1� !)
P

k pkv
k)

�
where

dv

dP
=

�
�
1� (1� !)

P
k
kpk
z1
(v)

k�2
�

1� � (1� !) (1� P )
P

k
k(k�2)pk

z1
(v)

k�3 (64)

Just considering the �nal term inside the brackets we de�ne:

f (�) =
�
�
1� (1� !)

P
k
kpk
z1
(v)

k�2
�

1� � (1� !) (1� P )
P

k
k(k�2)pk

z1
(v)

k�3

P
k kpkv

k�1

(1� (1� !)
P

k pkv
k)

(65)

Direct e¤ect @f
@� :

@f

@�
=

�
1� (1� !)

P
k
kpk
z1
(v)

k�2
�

1� � (1� !) (1� P )
P

k
k(k�2)pk

z1
(v)

k�3

P
k kpkv

k�1

(1� (1� !)
P

k pkv
k)

(66)

+(1� !) (1� P )
X
k

k (k � 2) pk
z1

(v)
k�3

�
�
�
1� (1� !)

P
k
kpk
z1
(v)

k�2
�

�
1� � (1� !) (1� P )

P
k
k(k�2)pk

z1
(v)

k�3
�2 P

k kpkv
k�1

(1� (1� !)
P

k pkv
k)

(67)

Indirect e¤ect @f@v
dv
d� :

@f

@v

dv

d�
= �

dv

d�

266666666666666664

� (1�!)
P

k

k(k�2)pk
z1

vk�3

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

vk�3

P
k kpkv

k�1

(1�(1�!)
P

k pkv
k)

+

�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

(v)k�3

P
k k(k�1)pkv

k�2

(1�(1�!)
P

k pkv
k)

+ (1� !)
P

k pkkv
k�1

�
�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

(v)k�3

P
k kpkv

k�1

(1�(1�!)
P

k pkv
k)

2

+� (1� !) (1� P )
P

k
k(k�2)(k�3)pk

z1
vk�4

�
�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

�
1��(1�!)(1�P )

P
k

k(k�2)pk
z1

vk�3
�2 P

k kpkv
k�1

(1�(1�!)
P

k pkv
k)

377777777777777775
(68)

where
dv

d�
= � (1� P )

1� (1� !)
P

k
kpk
z1
(v)

k�2

1� � (1� !) (1� P )
P

k
k(k�2)pk

z1
(v)

k�3 (69)
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�rst order term

@f

@�

����
�=0

=
X
k

kpk (70)

@f

@v

dv

dP

����
�=0

= 0

is the same with or without clustering. Now considering the second order terms ignoring any that are linear

in �

2
dv

d�

266666666666666664

� (1�!)
P

k

k(k�2)pk
z1

vk�3

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

vk�3

P
k kpkv

k�1

(1�(1�!)
P

k pkv
k)

+

�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

(v)k�3

P
k k(k�1)pkv

k�2

(1�(1�!)
P

k pkv
k)

+ (1� !)
P

k pkkv
k�1

�
�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

1��(1�!)(1�P )
P

k

k(k�2)pk
z1

(v)k�3

P
k kpkv

k�1

(1�(1�!)
P

k pkv
k)

2

+� (1� !) (1� P )
P

k
k(k�2)(k�3)pk

z1
vk�4

�
�
1�(1�!)

P
k

kpk
z1

(v)k�2
�

�
1��(1�!)(1�P )

P
k

k(k�2)pk
z1

vk�3
�2 P

k kpkv
k�1

(1�(1�!)
P

k pkv
k)

377777777777777775
(71)

+(1� !) (1� P )
X
k

k (k � 2) pk
z1

(v)
k�3

�

�
1� (1� !)

P
k
kpk
z1
(v)

k�2
�

�
1� � (1� !) (1� P )

P
k
k(k�2)pk

z1
(v)

k�3
�2 P

k kpkv
k�1

(1� (1� !)
P

k pkv
k)

(72)

d2f

d�2

����
�=0

= �2 (1� P )!

26664
� (1� !)

�
E
�
k2
�
� 2z1

�
1
!

+
�
E
�
k2
�
� z1

�
+(1� !) z1 1!

+0

37775 (73)

+(1� !) (1� P )
�
E
�
k2
�
� 2z1

�
d2f

d�2

����
�=0

= (1� P )
��
E
�
k2
�
� z1

�
(3� 5!)� 2! (1� !) z1

�
� 3 (1� !) (1� P ) z1

the �nal term �3 (1� !) (1� P ) z1 < 0. The expression is otherwise identical to the case without clustering,
hence clustering results in a higher price.

11 Proof of Theorem 9

Proof. Assuming a constant cost per unit of advertising � and marginal cost of production c, the monopo-
list�s pro�t is de�ned by

� (P; !) = (P � c) (1�H0 (1� !; P ))� �! (74)
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In a Poisson network the generating functions are G0 (x) = G1 (x) = exp (z1 (x� 1)); hence the �rm�s pro�t
is given by

� (P; z1) = (P � c)D (P; !)� �! (75)

= (1� P ) (1� (1� !) exp (�z1 (1�H1 (1� !; P ))))

and the optimal price and level of advertising P �; !� satisfy:

d� (P; !)

dP

����
P=P�;!=!�

= 0 (76)

d� (P; !)

d!

����
P=P�;!=!�

= 0

D (P �; !�) + (P � � c) dD
dP

����
P=P�;!=!�

= 0 (77)

D (P �; !�)

P �
dD

dP

����
P=P�;!=!�

=
(P � � c)
P �

(P � � c) dD
d!

����
P=P�;!=!�

� � = 0

We need to show
@
�
D(P�;!�)

P�
dD
dP

��
P=P�;!=!�

�
@!

������
P=P�;!=!�

> 0 (78)

since D = 1�H1 (1� !; P ) ; we know

H1 (1� !; P ) = P + (1� P ) (1� !) exp (�z1 (1�H1 (1� !; P ))) (79)
dH1 (1� !; P )

dP
=

1� (1� !) exp (�z1 (1�H1 (1� !; P )))
(1� (1� !) (1� P ) z1 exp (�z1 (1�H1 (1� !; P ))))

dH1

dP = �dD
dP hence the elasticity of demand with respect to price is

D (P; !)

P

dD (P; !)

dP
= � P

1� P
1

(1� (1� !) (1� P ) z1 exp (�z1 (1�H1 (1� !; P ))))
(80)

Holding the price constant, the sign of the derivative w.r.t. ! is sign
�
�d((1�!)(1�P )z1 exp(�z1(1�H1(1�!;P ))))

d!

�
d ((1� !) (1� P ) z1 exp (�z1 (1�H1 (1� !; P ))))

d!
(81)

= � (1� P ) z1 exp (�z1 (1�H1 (1� !; P )))

+
dH1
d!

((1� !) (1� P ) z1 exp (�z1 (1�H1 (1� !; P )))) (82)

< 0

Hence
@
�
D(P�;!�)

P�
dD
dP

��
P=P�;!=!�

�
@!

������
P=P�;!=!�

> 0 (83)
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demand is less elastic w.r.t. price as advertising increases ) price and advertising are complements.

12 Proof of Theorem 10

Proof. The probability generating function of component sizes an individual with k friends belongs to,

conditional on not being in the giant component, is given by
�
H1(x;P )

u

�k
. The expected component size is

1 + k
H0
1(1�!;P )

u

�
H1(1�!;P )

u

�k�1
= 1+ k

H0
1(1�!;P )

u : Also the probability a person with k friends is not in the

giant component is uk. Therefore

k� = arg max
k2f0;1:::g

�
1 + k

H 0
1 (1� !; P )

u

�
uk (84)

note that for 0 < u < 1 b > 0 the function f (k) = (1 + kb)uk is continuous in k; has a maximum at

k�� = maxk�0

n
0;�

�
1

lnu(P ) +
1
b

�o
and f 0 (k) > 0 for k < k�� and f 0 (k) < 0 for k > k��. Hence k� is either

the greatest integer below bk��c or the smallest integer above k��; dk��e : Thus

k� 2 fbk��c ; dk��eg for P < P crit (85)

13 Proof of Corollary 1

Proof. We have

k�� = �
�

1

lnu (P )
+

u(P )

H 0
1 (1� !; P )

�
(86)

= �
 

1

lnu (P )
+

�
(1� P )G1 (u)

u(P ) (1� (1� P )G01 (u))

��1!

= �
 

1

lnu (P )
+

�
(1� P )

P
kpku

k�2

(z1 � (1� P )
P
k (k � 1) pkuk�2)

��1!

where 1
H0
1(1�!;P crit) is �nite so immediately limP!P crit

�1
lnu(P ) =1) limP!P crit k� =1. Also by de�nition

z1 � (1� P )
P
k (k � 1) pkuk�2 > 0 for P < P crit u > 0 and (1� P )

P
kpku

k�2 > 0 for u (P ) > 0 so k� is

continuous in u and hence P for P < P crit. Finally (1�P )
P
kpku

k�2

(z1�(1�P )
P
k(k�1)pkuk�2) > 0 so � 1

lnu(P ) is an upper

bound on k��.

14 Proof of Theorem 11

Proof. Demand is given by

D =
X
k

pk
�
1� uk

� Z 1

P

� (�jk) d� (87)

where u is the smallest non-negative solution to the self consistency condition:

u = 1� F1 (1) + F1 (u) (88)

The following lemma illustrates some properties of u with respect to the price which I will subsequently use
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to prove the above theorem.

Lemma 2 Suppose u (P ) is given by the smallest non-negative solution to equation 6 and qk (P ) is contin-
uous in P then

1. u (P ) = 1 and du
dP = 0 for P

crit � P � 1

2. u < 1 and u (P ) is continuous in P for 0 � P < P crit

3. Suppose further that supk
���dqk(P )dP

��� <1 for all 0 � P < P crit then du
dP exists for all 0 � P < P crit

Proof. 1) u (P ) is the smallest non-negative solution to:

u = 1� F1 (1) + F1 (u) (89)

= 1�
X
k

p0kqk (P ) +
X
k

p0kqk (P )u
k�1

let �(u; P ) = 1 �
P

k p
0
kqk (P ) +

P
k p

0
kqk (P )u

k�1. Given the assumptions �(u; P ) is continuous in both

P and u and weakly decreasing and weakly increasing in each respectively. Further it is di¤erentiable and

strictly convex in u for u 2 [0; 1] provided supk
���dqk(P )dP

��� < 1 and qk (P ) > 0 for at least one k > 2. If

P crit � P < 1 then
1X
k=2

p0k (k � 1) qk (P ) �
1X
k=2

p0k (k � 1) qk
�
P crit

�
= 1 (90)

which implies that the smallest non-negative solution is u = 1 since �(u; P ) > u for all u < 1 when

P crit � P < 1.
2) Consider u (P 0) and u (P 00) where 0 < P 0 < P 00 < P crit. Given that qk (P ) is weakly decreasing and

continuous in P and �(u; P ) is continuous, increasing and convex in u then this implies u (P 0) < u (P 00).

To prove continuity I will show that for any " > 0 such that ju (P 0)� u (P 00)j < " then for P 2 (P 0; P 0 + �)
where � = P 0�P 00

2 ju (P 0)� u (P )j < ". Given the de�nition of � P 0 < P < P 00. By the intermediate value
theorem we have that �(u; P ) � u = 0 has a solution in the interval u 2 [u (P 0) ; u (P 00)]. The continuity
of qk (P ) implies that the following is true �(u; P 0) � �(u; P ) and �(u; P 00) � �(u; P ) for all u: Hence

�(u (P ) ; P 0) < u (P ) < �(u (P ) ; P 00) implying that u (P 0) < u (P ) < u (P 00). We now have the result that

ju (P 0)� u (P )j < ".
3) To show di¤erentiability consider the implicit relationship for u : u��(u; P ) = 0. Now di¤erentiating

du

dP
=

d�
dP

1� d�
du

(91)

=

P
k p

0
k
dqk(P )
dP

�
uk�1 � 1

�
1�

P
k p

0
k (k � 1) qk (P )uk�2

the denominator is positive for P < P crit and the numerator exists provided supk
dqk(P )
dP <1.

For P < P crit
1X
k=2

p0k (k � 1) qk (P ) <
1X
k=2

p0k (k � 1) qk
�
P crit

�
= 1 (92)

the strictness of the inequality is given by the assumption that for any " > 0 9k > 2 : qk
�
P crit

�
<

qk
�
P crit � "

�
: Hence u (P ) < 1 for P < P crit.
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Using this lemma we now prove the parts of the main theorem.

1) D (P ) is given by

D =
X
k

pk
�
1� uk

� Z 1

P

� (�jk) d� (93)

which is continuous if u (P ) is continuous and � (�jk) contains no mass points which it does not by assump-
tion.

2) The statement:
D (P ) = 0 for P � P crit

D (P ) > 0 for P < P crit
(94)

follows from u (P ) = 1 for P � P crit and u (P ) < 1 for P < P crit in the earlier lemma and a positive fraction
of individuals with k � 1 having valuations above the price.
3) dDdP is given by:

dD

dP
= � du

dP

X
k

pkku
k�1

Z 1

P

� (�jk) d� �
X
k

pk
�
1� uk

�
� (�jk) (95)

which is 0 when u (P ) = 1 and exists and is decreasing for P < P crit since du
dP � 0 and

P
k pk

�
1� uk

�
� (�jk) d� >

0 for u < 1.

4) When � and k are uncorrelated � (�jk) = 1 and du
dP > 1 for P < P

crit and we have

dD

dP
= � du

dP

X
k

pkku
k�1 (1� P )�

X
k

pk
�
1� uk

�
(96)

D (P ) = (1� P )
X
k

pk
�
1� uk

�
therefore

P

D

dD

dP
= � P

1� P

"
du
dP

P
k pkku

k�1P
k pk (1� uk)

+ 1

#
(97)

where
du
dP

P
k pkku

k�1P
k pk(1�uk)

> 0.
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