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Appendix : Proofs 

 

Proof of Proposition 2  

Consider the convex case. Since the distribution of pre-test scores is assumed to be symmetric 

and strictly quasi-concave, the peak of the distribution must be at the median. To see that  

must be above the median, suppose that  were less than the median. Denote the distance 

between  and the median as D. Now consider an alternative , denoted ′, equal to the 

median plus D. By symmetry of the distribution, the total number of students at any distance 

from ′ equals the total number of students at any distance from . Furthermore, the 

distribution of )( *xxh i   is identical to the distribution of h( ix ′). That, the distribution of 

the teachers’ impact on students’ scores is the same. However, the distribution of students within 

range θ of ′first order stochastically dominates the distribution of students within a range θ of 

. Thus, by convexity of  P( ), the teacher would be better off with the target teaching level ′, 

since she then improves the scores of higher-scoring students.  

Since the distribution is symmetric, quasi-concave, if P( ) is linear, maximizing teacher 

payoff means maximizing iii dxxfxxh )()( *  . In this case, the median maximizes teacher 

payoffs. This implies that if P( ) is convex, the first order condition can only be satisfied for  

greater than the median. 

Arguments for the linear and concave case are analogous. ■ 

 

Proof of Proposition 3 

Consider first the case in which f( ) is increasing in peer test scores.  A uniform marginal 

increase in peer baseline achievement will lead to an increase in the focus teaching level. 



 

Students with x >   and x<  +θ will be closer to the target teaching level. They will thus 

benefit not only from the direct impact of higher-achieving peers but also from the indirect 

impact on teachers’ choice of target instruction level. Students whose initial test scores were 

above  +θ are still too far from the target level of instruction, but still benefit from the increase 

in test scores (note that in the case where the teacher reward is a convex function of student test 

scores, there may not be any student above  +θ, as  may have been chosen to be within θ of 

the top of the distribution).  

Students with scores between  and   benefit from the higher achievement of their 

peers and from any increase in teacher effort associated with the higher peer achievement. On the 

other hand, these students now are further away from the new target teaching level. The overall 

effect is ambiguous. 

Students with scores less than  were not in range of the teacher’s instruction prior to 

the increase in test scores, and are not advantaged or disadvantaged by the change in the target 

teaching level. However, they benefit from the higher-achievement of their peers.  

In the case where f( ) is a constant (no direct peer effects), the proof follows from the 

discussion of the indirect effects. ■ 

 

Proof of Proposition 5 

Consider first the case of convex payoffs. Suppose that DU = DL. In that case, both the lower 

track teacher and the upper track teacher would have the same number of students within any 

distance, by the symmetry of the original distribution. 

The first order necessary condition for an optimum is that marginally increasing D  reduces 

the contribution to the P function from students to the left of  by the same amount it increases 



 

the contribution to the P function from students to the right of .  This necessary condition 

cannot be satisfied simultaneously for both the low achievement class and high achievement 

class if the target teaching levels in each class are symmetric around the median. To see this note 

that, by symmetry,increasing D will have the same effect on the total number of students within 

distance θ of  for both sections.  That is, the distribution of h(xi – ) will be affected in 

exactly the same way. However, increasing D in the lower track will move  away from the 

higher-scoring students of the class, while it moves  closer to the higher-scoring students in 

the upper track. This implies that if the third derivative is non-negative (i.e. the degree of 

convexity is non-decreasing), there are more gains from increasing D in the higher track than in 

the lower track. Hence, if L is chosen optimally such that the gains from increasing L equal 

the losses from doing so, it will always be the case that at a symmetric U (i.e. such that DU = 

DL), increasing U will increase teacher payoffs.  

So far we have shown that choosing DU = DL cannot be optimal. To complete the proof for the 

convex case, note that choosing DU < DL will not be optimal either, since this moving to DU = DL 

will always increase payoff of the teacher in the upper track..  

Arguments are analogous for the linear and concave cases. Under linearity, the median 

student will be equidistant from the target teaching level in the lower and upper section. Under 

concavity, they will be closer in the top section.■ 

 

Proof of Proposition 6  

Consider the convex case. When choosing the optimal effort level, the teacher equalizes the 

marginal benefit of effort, )(eg  times iii dxxfyPyP )()()(   to the marginal cost of effort, 

)(ec . The argument of this proof is as follows: Since )( yP for the teacher in the upper section 



 

is higher than )( yP  for the teacher in the lower section, it must be that the teacher in the upper 

section exerts more effort since g(.) is concave, while c(.) is strictly convex. 

It remains to be shown that )( yP  for the teacher in the upper section is higher than )( yP  

for the teacher in the lower section. Recall that by Proposition 5, under a convex payoff function, 

we always have DU > DL, so the teacher in the upper section chooses the target level of 

instruction to be further away from the median student than the teacher in the lower section. 

Note that by convexity of P( ), if the overall payoff P(y) in the upper section exceeds overall 

payoff in the lower section, then the marginal payoff )( yP is also higher in the upper section 

than in the lower section. Furthermore, even if the upper track teacher chose DU = DL, the 

average payoff would be higher in the upper section. Since the teacher in the upper section 

maximizes P(y) by choosing  DU > DL (while having the option of DU = DL) it must be that his 

payoff is even higher than at DU = DL. But this implies that )( yP  for the teacher in the upper 

section is higher than )( yP  for the teacher in the lower section. 

The proofs for the linear and concave cases follow a similar logic. 

The second result (that for high enough λ, the difference between effort levels of contract 

teachers assigned to the high- and low-achievement classes will become arbitrarily small) is due 

to the assumption that the cost of effort becomes arbitrarily high as a maximum effort level ē is 

approached. ■ 

 

 

 


