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I. Verification of optimality

In this section we take the equilibrium Price/Dividend ratio F (y) as given,
and verify that the specialist’s consumption policy c = Dt (1 + l − yt) is optimal
subject to his budget constraint. Our argument is a variant of the standard one:
it uses the strict concavity of u (·) and the specialist’s budget constraint to show
that the specialist’s Euler equation is necessary and sufficient for the optimality
of his consumption plan.

Specifically, fixing t = 0 and the starting state (y0, D0), define the pricing kernel
as

ξt ≡ e−ρtc−γ
t = e−ρtD−γ

t (1 + l − ρyt)
−γ .

Consider another consumption profile ĉ which satisfies the budget constraint
E

[∫∞
0 ĉtξtdt

]
≤ ξ0D0 (F0 − y0) (recall that the specialist’s wealth is D0 (F0 − y0);

here we require that the specialist’s feasible trading strategies be well-behaved,
e.g., his wealth process remains non-negative). Then we have

E

[∫ ∞

0
e−ρtu (ct) dt

]
≥ E

[∫ ∞

0
e−ρtu (ĉt) dt

]
+ E

[∫ ∞

0
e−ρtu′ (ct) (ct − ĉt) dt

]
= E

[∫ ∞

0
e−ρtu (ĉt) dt

]
+ E

[∫ ∞

0
ξtctdt

]
− E

[∫ ∞

0
ξtĉtdt

]
.

If the specialist’s budget equation holds in equality for the equilibrium consump-
tion process c, i.e., if

E

[∫ ∞

0
ξtctdt

]
= ξ0D0 (F0 − y0) ,

then the result follows. Somewhat surprisingly, for our model this seemingly
obvious claim requires an involved argument because of the singularity at yb =
1+l
ρ .
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One can easily check that, for ∀T > 0, we have

(1) ξ0D0 (F0 − y0) =
∫ T

0
ctξtdt+

∫ T

0
σ (Dt, yt) dZt + ξTDT (FT − yT ) ,

where σ (Dt, yt) corresponds to the specialist’s equilibrium trading strategy (which
involves terms such as (1 + l − ρy)−γ−1 and is NOT uniformly bounded as y →
yb). Our goal in the following steps is to show that in expectation, the latter two
terms vanishes when T →∞.

Step 1: Limiting Behavior of y at yb

The critical observation regarding the evolution of y is that when y approaches
yb, it approximately follows a Bessel process with a dimension δ = γ + 2 > 2.
(Given a δ-dimensional Brownian motion Z, a Bessel process with a dimension

δ is the evolution of ‖Z‖ =
√∑δ

i=1 Z
2
i , which is the Euclidean distance between

Z and the origin.) According to standard results on Bessel processes, yb is an
entrance-no-exit point, and is not reachable if the starting value y0 < yb (if δ > 2).
Intuitively, when y is close to yb, the dominating part of µy is proportional to

1
y−yb < 0, while the volatility σy is bounded— therefore a drift that diverges to
negative infinity keeps y away from the singular point yb. This result implies that
our economy never hits yb.

To show that for y close to yb, y’s evolution can be approximated by a Bessel
Process, one can easily check that when y → yb,

r ' −(γ + 1)σ2

2
ρhθ̂bG

1 + l − ρhy
, µy ' −

(γ + 1)σ2

2
ρhθ̂2

bG
2

1 + l − ρhy
, σy = −Gσθ̂b;

and therefore

dy = −(γ + 1)σ2

2
ρθ̂2

bG
2

1 + l − ρy
dt−Gσθ̂bdZt.

Utilizing the result F ′
(
yb

)
= 1 established in Section ??, we know that when

y → yb, θ̂b ' F − θsy ' 1
1+my

b = 1
1+m

1+l
ρ , and G ' 1 +m. Let

zt = 1 + l − ρyt;

then it is easy to show that q = z
Gσθ̂bρ

= z
σ(1+l) evolves approximately according

to
dqt = − 1

Gσθ̂b

dyt =
(γ + 1)

2qt
dt+ dZt,

which is a standard Bessel process with a dimension δ = γ + 2. Therefore, z is
also a scaled version of a Bessel process, and can never reach 0 (or, y cannot reach
yb). In the following analysis, we focus on the limiting behavior of z.
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Step 2: Localization

Note that in (1), due to the singularity at y = yb, both the local martingale
part

∫ T
0 σ (Dt, yt) dZt and the terminal wealth part ξTDT (FT − yT ) are not well-

behaved. To show our claim, we have to localize our economy, i.e., stop the
economy once either y is sufficiently close to yb or D is sufficiently close to 0.
Specifically, we define

Tn = inf
{
t : either zt = n−1 or Dt = n−h

}
where h is a positive constant (as we will see, the choice of h, which is around 1,
gives some flexibility for γ other than 2). Here, because y and z have a one-to-one
relation (z = 1 + l − ρy), for simplicity we localize z instead.

Clearly this localization technique ensures that the local martingale part
∫ Tn

0 σ (Dt, yt) dZt

is a martingale (one can check that σ (Dt, yt) is continuous in Dt and yt, in turn
Dt and xt; therefore σ (Dt, yt) is bounded). As Tn → ∞ when n → ∞, for our
claim we need to show

lim
n→∞

E [ξTnDTn (FTn − yTn)] = 0

We substitute from the definition of ξ:

E
[
e−ρTnD1−γ

Tn
z−γ
Tn

(F (yTn)− yTn)
]
≤ E

[
e−ρTnnh(γ−1)z−γ

Tn
(F (yTn)− yTn)

]
.

Since the analysis will be obvious if z−γ (F (y)− y) is uniformly bounded (notice
here z = 1 + l − ρy), it is sufficient to consider zTn = 1

n (or, yTn = yb − 1
nρ

). Because F
(
yb

)
= yb and F ′

(
yb

)
= 1, by Taylor expansion we know that

F
(
yb − 1

nρ

)
−

(
yb − 1

nρ

)
can be written as ψ (n) 1

n when n is sufficiently large,
and ψ (n) → 0 as n→∞. Therefore we have to show that, as n→∞,

E
[
e−ρTnn(γ−1)(1+h)

]
ψ (n) → 0

and a sufficient condition is that there exists some constant M so that

E
[
e−ρTn

]
n(γ−1)(1+h) →M.

We apply existing analytical results in the literature to show our claim. To do
so, we have to separate our two state variables. We define

TD
n = inf

{
t : Dt = n−h

}
, T x

n = inf
{
t : zt = n−1

}
.
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We want to bound E
[
e−ρTn

]
by the sum of E

[
e−ρT D

n

]
and E

[
e−ρT z

n
]
. The

Laplace transform of Tn is simply

E
[
e−ρTn

]
=

∫ ∞

0
e−ρTdF (T ) = ρ

∫ ∞

0
e−ρTF (T ) dT,

where the bold F denotes the distribution function of Tn. The similar relation
also holds for TD

n or T z
n . Denote FD (·) (or Fz (·)) as the distribution function for

TD
n (or T z

n), and notice that

1− F (T ) = Pr (Tn > T ) = Pr
(
TD

n > T, T z
n > T

)
> Pr

(
TD

n > T
)
Pr (T z

n > T )

= 1− FD (T )− Fz (T ) + FD (T )Fz (T ) ,

because 1{T D
n >T} and 1{T x

n >T} are positively correlated (both take the value 1
when the Brownian Z is high).1 Therefore F (T ) < FD (T ) + Fz (T ), or

E
[
e−ρTn

]
n(γ−1)(1+h) < E

[
e−ρT D

n

]
n(γ−1)(1+h) + E

[
e−ρT z

n
]
n(γ−1)(1+h).

Our goal is to show the right hand side of the above inequality goes to zero when
n→∞.

There are two terms in the right hand side of the above inequality. For the first
term, we can use the standard result of the Laplace transform of the first-hitting
time distribution for a GBM process (e.g., Borodin and Salminen (2002), page
622):

E
[
e−ρT D

n

]
= n

− h
σ2

“√
2ρσ2+(g−0.5σ2)2+g−0.5σ2

”
.

Thus, by choosing some appropriate h so that

h

σ2

(√
2ρσ2 + (g − 0.5σ2)2 + g − 0.5σ2

)
> (γ − 1) (1 + h) ,

the first term E
[
e−ρT D

n

]
n(γ−1)(1+h) vanishes as n → ∞. For instance, this con-

dition holds when h = 0.9 under our parameterization. The next step is for the
second term.

Step 3: Regulated Bessel Process

For the second term E
[
e−ρT z

n
]
n(γ−1)(1+h), because our economy (i.e., evolution

1 Technically, using the technique of Malliavian derivatives, we can show that both zs and Ds

have positive diffusions in the martingale representations for all s. Then, the running minimum zT =
min {zt : 0 < t < T} and DT = min {Dt : 0 < t < T} have positive loadings always on the martingale
representations (using the technique in Methods of Mathematical Finance, Karatzas and Shreve (1998),
Page 367). The same technique can be applied to 1{T z

n>T} = 1{zT >T} and 1{T D
n >T} = 1{DT >T}, as

an indicator function can be approximated by a sequence of differentiable increasing functions.
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of z) differs from the evolution of a Bessel process when z is far away from 0,
an extra care needs to be taken. We consider a regulated Bessel process which
is reflected at some positive constant z. Intuitively, by doing so, we are putting
an upper bound for E

[
e−ρT z

n
]
, as the reflection makes zt to hit n−1 more likely

(therefore, a larger Fz). Also, for a sufficiently small z > 0, when z ∈ (0, z], z
follows a Bessel process with a dimension γ+2−ε. Therefore, Fz must be bounded
by the first-hitting time distribution of a Bessel process with a dimension δ, where
δ takes value from γ+2−ε to γ+2, where ε is sufficiently small. Finally, note that
by considering a Bessel process we are neglecting certain drift for z. However,
one can easily check that when z is close to 0, the adjustment term for µy is
−1+l

ρ γσ2 < 0. This implies that we are neglecting a positive drift for z—which
potentially makes hitting less likely—thereby yielding an upper-bound estimate.

We have the following Lemma from the Bessel process.

LEMMA 1: Consider a Bessel process x with δ > 2 which is reflected at x >
0. Let ν = δ

2 − 1. Starting from x0 ≤ x, we consider the hitting time T x
n =

inf
{
t : xt = 1

n

}
. Then we have

E
[
e−ρT x

n
]
∝ n−2ν as n→∞

PROOF:
Due to the standard results in Bessel process and the Laplace transform of the

hitting time (e.g., see Borodin and Salminen (1996), Chapter 2), we have

E
[
e−ρT z

n
]

= ϕ (z0) /ϕ
(
n−1

)
,

where
ϕ (u) = c1u

−νIv

(√
2ρu

)
+ c2u

−νKv

(√
2ρu

)
,

and Iv (·) (and Kv (·)) is modified Bessel function of the first (and second) kind
of order v. Because R is a reflecting barrier, the boundary condition is

ϕ′ (z) = 0,

which pins down the constants c1 and c2 (up to a constant multiplication; notice
that this does not affect the value of E

[
e−ρT z

n
]
). Therefore the growth rate of

E
[
e−ρT z

n
]

is determined by nνKv

(√
2ρn−1

)
as Kv dominates Iv near 0. Since

Kv (z) has a growth rate z−ν when z → 0, the result is established.
For any y0, redefine starting point as z0 = min (1 + l − y0, z); clearly this

leads to an upper-bound estimate for E
[
e−ρT z

n
]
. However, since for all δ ∈

[γ + 2− ε, γ + 2], the above Lemma tells us that for any ε ∈ [0, ε], given γ = 2
and h = 0.9, when n→∞, for some sufficiently small ε > 0 we have

n(γ−1)(1+h)E
[
e−ρT z

n
]
∝ n(γ−1)(1+h)n−2ν = n(γ−1)(1+h)−γ+ε → 0 uniformly.
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Therefore we obtain our desirable result.
Finally ctξt > 0 implies that

∫∞
0 ctξtdt converges monotonically, and therefore

the specialist’s budget equation lim
T→∞

E
[∫ T

0 ξtctdt
]

= ξ0D0 (F0 − y0) holds for all

stopping times that converge to infinity. Q.E.D.

II. Appendix for Section 6

A. Borrowing Subsidy

We have the same ODE as in Appendix A. The only difference is that

µy =
1

1− θsF ′

(
θs + l + (r + σ2 − g)θ̂b − θ̂b∆r − ρy +

1
2
θsF

′′σ2
y

)
.

B. Direct Asset Purchase

In this case, the intermediary holds 1−s of the risky asset (where s is a function
of (y,D)). In the unconstrained region, αh = 1, and

αI
(
w + αh (1− λ)wh

)
P

= 1− s

which implies that αI = (1−s)F
F−λy . Therefore the households’ holding of the risky

asset through intermediaries is

θI
s =

(1− s) (1− λ) y
F − λy

,

and the total holding is θs = θI
s + s = (1−s)(1−λ)y

F−λy + s (y,D).

In the constrained region, αh = m(F−y)
(1−λ)y and αI = 1

1+m
(1−s)F
F−y . So

θI
s =

m (F − y)
(1− λ) y

1
1 +m

(1− s)F
F − y

(1− λ)
y

F
=

m

1 +m
(1− s)

and the total holding is

θs =
m

1 +m
(1− s) + s =

m+ s

1 +m
.

The same constraint cutoff applies yc = m
1−λ+mF

c.
Finally, the expressions for the case of capital infusion (i.e., changing m) is

isomorphic to the case of s > 0. This is because given s we can find some
appropriate m′ (s) = s+m

1−s such that m′

1+m′ = m+s
1+m .


