Intermediary Asset Pricing: Online Appendix

By Zhiguo He and Arvind Krishnamurthy *

I. Verification of optimality

In this section we take the equilibrium Price/Dividend ratio F(y) as given, and verify that the specialist's consumption policy $c = D_t (1 + l - y_t)$ is optimal subject to his budget constraint. Our argument is a variant of the standard one: it uses the strict concavity of $u(\cdot)$ and the specialist's budget constraint to show that the specialist's Euler equation is necessary and sufficient for the optimality of his consumption plan.

Specifically, fixing t = 0 and the starting state (y_0, D_0) , define the pricing kernel as

$$\xi_t \equiv e^{-\rho t} c_t^{-\gamma} = e^{-\rho t} D_t^{-\gamma} \left(1 + l - \rho y_t \right)^{-\gamma}.$$

Consider another consumption profile \hat{c} which satisfies the budget constraint $E\left[\int_{0}^{\infty} \hat{c}_{t}\xi_{t}dt\right] \leq \xi_{0}D_{0}\left(F_{0}-y_{0}\right)$ (recall that the specialist's wealth is $D_{0}\left(F_{0}-y_{0}\right)$; here we require that the specialist's feasible trading strategies be well-behaved, e.g., his wealth process remains non-negative). Then we have

$$E\left[\int_{0}^{\infty} e^{-\rho t} u(c_{t}) dt\right] \geq E\left[\int_{0}^{\infty} e^{-\rho t} u(\widehat{c}_{t}) dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} u'(c_{t}) (c_{t} - \widehat{c}_{t}) dt\right]$$
$$= E\left[\int_{0}^{\infty} e^{-\rho t} u(\widehat{c}_{t}) dt\right] + E\left[\int_{0}^{\infty} \xi_{t} c_{t} dt\right] - E\left[\int_{0}^{\infty} \xi_{t} \widehat{c}_{t} dt\right]$$

If the specialist's budget equation holds in equality for the equilibrium consumption process c, i.e., if

$$E\left[\int_0^\infty \xi_t c_t dt\right] = \xi_0 D_0 \left(F_0 - y_0\right),$$

then the result follows. Somewhat surprisingly, for our model this seemingly obvious claim requires an involved argument because of the singularity at $y^b = \frac{1+l}{\rho}$.

^{*} Respectively: University of Chicago, Booth School of Business and NBER; Northwestern University, Kellogg School of Management and NBER. E-mails: zhiguo-he@chicagobooth.edu, a-krishnamurthy@northwestern.edu. Address: 2001 Sheridan Road, Evanston, IL 60208.

One can easily check that, for $\forall T > 0$, we have

(1)
$$\xi_0 D_0 (F_0 - y_0) = \int_0^T c_t \xi_t dt + \int_0^T \sigma (D_t, y_t) dZ_t + \xi_T D_T (F_T - y_T),$$

where $\sigma(D_t, y_t)$ corresponds to the specialist's equilibrium trading strategy (which involves terms such as $(1 + l - \rho y)^{-\gamma - 1}$ and is NOT uniformly bounded as $y \rightarrow y^b$). Our goal in the following steps is to show that in expectation, the latter two terms vanishes when $T \rightarrow \infty$.

Step 1: Limiting Behavior of y at y^b

The critical observation regarding the evolution of y is that when y approaches y^b , it approximately follows a Bessel process with a dimension $\delta = \gamma + 2 > 2$. (Given a δ -dimensional Brownian motion Z, a Bessel process with a dimension δ is the evolution of $||Z|| = \sqrt{\sum_{i=1}^{\delta} Z_i^2}$, which is the Euclidean distance between Z and the origin.) According to standard results on Bessel processes, y^b is an entrance-no-exit point, and is not reachable if the starting value $y_0 < y^b$ (if $\delta > 2$). Intuitively, when y is close to y^b , the dominating part of μ_y is proportional to $\frac{1}{y-y^b} < 0$, while the volatility σ_y is bounded— therefore a drift that diverges to negative infinity keeps y away from the singular point y^b . This result implies that our economy never hits y^b .

To show that for y close to y^b , y's evolution can be approximated by a Bessel Process, one can easily check that when $y \to y^b$,

$$r \simeq -\frac{(\gamma+1)\sigma^2}{2} \frac{\rho^h \hat{\theta}_b G}{1+l-\rho^h y}, \mu_y \simeq -\frac{(\gamma+1)\sigma^2}{2} \frac{\rho^h \hat{\theta}_b^2 G^2}{1+l-\rho^h y}, \sigma_y = -G\sigma \hat{\theta}_b;$$

and therefore

$$dy = -\frac{\left(\gamma+1\right)\sigma^2}{2} \frac{\rho \hat{\theta}_b^2 G^2}{1+l-\rho y} dt - G\sigma \hat{\theta}_b dZ_t.$$

Utilizing the result $F'(y^b) = 1$ established in Section ??, we know that when $y \to y^b$, $\hat{\theta}_b \simeq F - \theta_s y \simeq \frac{1}{1+m} y^b = \frac{1}{1+m} \frac{1+l}{\rho}$, and $G \simeq 1 + m$. Let

 $z_t = 1 + l - \rho y_t;$

then it is easy to show that $q = \frac{z}{G\sigma\hat{\theta}_b\rho} = \frac{z}{\sigma(1+l)}$ evolves approximately according to

$$dq_t = -\frac{1}{G\sigma\hat{\theta}_b}dy_t = \frac{(\gamma+1)}{2q_t}dt + dZ_t,$$

which is a standard Bessel process with a dimension $\delta = \gamma + 2$. Therefore, z is also a scaled version of a Bessel process, and can never reach 0 (or, y cannot reach y^b). In the following analysis, we focus on the limiting behavior of z.

STEP 2: LOCALIZATION

Note that in (1), due to the singularity at $y = y^b$, both the local martingale part $\int_0^T \sigma(D_t, y_t) dZ_t$ and the terminal wealth part $\xi_T D_T (F_T - y_T)$ are not wellbehaved. To show our claim, we have to localize our economy, i.e., stop the economy once either y is sufficiently close to y^b or D is sufficiently close to 0. Specifically, we define

$$T_n = \inf \left\{ t : \text{either } z_t = n^{-1} \text{ or } D_t = n^{-h} \right\}$$

where h is a positive constant (as we will see, the choice of h, which is around 1, gives some flexibility for γ other than 2). Here, because y and z have a one-to-one relation ($z = 1 + l - \rho y$), for simplicity we localize z instead.

Clearly this localization technique ensures that the local martingale part $\int_0^{T_n} \sigma(D_t, y_t) dZ_t$ is a martingale (one can check that $\sigma(D_t, y_t)$ is continuous in D_t and y_t , in turn D_t and x_t ; therefore $\sigma(D_t, y_t)$ is bounded). As $T_n \to \infty$ when $n \to \infty$, for our claim we need to show

$$\lim_{n \to \infty} E\left[\xi_{T_n} D_{T_n} \left(F_{T_n} - y_{T_n}\right)\right] = 0$$

We substitute from the definition of ξ :

$$E\left[e^{-\rho T_n} D_{T_n}^{1-\gamma} z_{T_n}^{-\gamma} \left(F\left(y_{T_n}\right) - y_{T_n}\right)\right] \le E\left[e^{-\rho T_n} n^{h(\gamma-1)} z_{T_n}^{-\gamma} \left(F\left(y_{T_n}\right) - y_{T_n}\right)\right].$$

Since the analysis will be obvious if $z^{-\gamma}(F(y) - y)$ is uniformly bounded (notice here $z = 1 + l - \rho y$), it is sufficient to consider $z_{T_n} = \frac{1}{n}$ (or, $y_{T_n} = y^b - \frac{1}{n\rho}$). Because $F(y^b) = y^b$ and $F'(y^b) = 1$, by Taylor expansion we know that $F\left(y^b - \frac{1}{n\rho}\right) - \left(y^b - \frac{1}{n\rho}\right)$ can be written as $\psi(n) \frac{1}{n}$ when n is sufficiently large, and $\psi(n) \to 0$ as $n \to \infty$. Therefore we have to show that, as $n \to \infty$,

$$E\left[e^{-\rho T_{n}}n^{(\gamma-1)(1+h)}\right]\psi\left(n\right)\to 0$$

and a sufficient condition is that there exists some constant M so that

$$E\left[e^{-\rho T_n}\right] n^{(\gamma-1)(1+h)} \to M.$$

We apply existing analytical results in the literature to show our claim. To do so, we have to separate our two state variables. We define

$$T_n^D = \inf\left\{t: D_t = n^{-h}\right\}, T_n^x = \inf\left\{t: z_t = n^{-1}\right\}.$$

We want to bound $E\left[e^{-\rho T_n}\right]$ by the sum of $E\left[e^{-\rho T_n^D}\right]$ and $E\left[e^{-\rho T_n^z}\right]$. The Laplace transform of T_n is simply

$$E\left[e^{-\rho T_n}\right] = \int_0^\infty e^{-\rho T} d\mathbf{F}\left(T\right) = \rho \int_0^\infty e^{-\rho T} \mathbf{F}\left(T\right) dT,$$

where the bold \mathbf{F} denotes the distribution function of T_n . The similar relation also holds for T_n^D or T_n^z . Denote $\mathbf{F}^D(\cdot)$ (or $\mathbf{F}^z(\cdot)$) as the distribution function for T_n^D (or T_n^z), and notice that

$$1 - \mathbf{F}(T) = \Pr(T_n > T) = \Pr(T_n^D > T, T_n^z > T) > \Pr(T_n^D > T) \Pr(T_n^z > T)$$

= $1 - \mathbf{F}^D(T) - \mathbf{F}^z(T) + \mathbf{F}^D(T) \mathbf{F}^z(T)$,

because $\mathbf{1}_{\{T_n^D > T\}}$ and $\mathbf{1}_{\{T_n^T > T\}}$ are positively correlated (both take the value 1 when the Brownian Z is high).¹ Therefore $\mathbf{F}(T) < \mathbf{F}^D(T) + \mathbf{F}^z(T)$, or

$$E\left[e^{-\rho T_{n}}\right]n^{(\gamma-1)(1+h)} < E\left[e^{-\rho T_{n}^{D}}\right]n^{(\gamma-1)(1+h)} + E\left[e^{-\rho T_{n}^{z}}\right]n^{(\gamma-1)(1+h)}.$$

Our goal is to show the right hand side of the above inequality goes to zero when $n \to \infty$.

There are two terms in the right hand side of the above inequality. For the first term, we can use the standard result of the Laplace transform of the first-hitting time distribution for a GBM process (e.g., Borodin and Salminen (2002), page 622):

$$E\left[e^{-\rho T_n^D}\right] = n^{-\frac{h}{\sigma^2}\left(\sqrt{2\rho\sigma^2 + (g-0.5\sigma^2)^2} + g-0.5\sigma^2\right)}.$$

Thus, by choosing some appropriate h so that

$$\frac{h}{\sigma^2} \left(\sqrt{2\rho\sigma^2 + (g - 0.5\sigma^2)^2} + g - 0.5\sigma^2 \right) > (\gamma - 1) (1 + h),$$

the first term $E\left[e^{-\rho T_n^D}\right]n^{(\gamma-1)(1+h)}$ vanishes as $n \to \infty$. For instance, this condition holds when h = 0.9 under our parameterization. The next step is for the second term.

STEP 3: REGULATED BESSEL PROCESS

For the second term $E\left[e^{-\rho T_n^z}\right]n^{(\gamma-1)(1+h)}$, because our economy (i.e., evolution

¹ Technically, using the technique of Malliavian derivatives, we can show that both z_s and D_s have positive diffusions in the martingale representations for all s. Then, the running minimum $\underline{z}_T = \min \{z_t : 0 < t < T\}$ and $\underline{D}_T = \min \{D_t : 0 < t < T\}$ have positive loadings always on the martingale representations (using the technique in *Methods of Mathematical Finance*, Karatzas and Shreve (1998), Page 367). The same technique can be applied to $\mathbf{1}_{\{T_n^z > T\}} = \mathbf{1}_{\{\underline{z}_T > T\}}$ and $\mathbf{1}_{\{T_n^D > T\}} = \mathbf{1}_{\{\underline{D}_T > T\}}$, as an indicator function can be approximated by a sequence of differentiable increasing functions.

of z) differs from the evolution of a Bessel process when z is far away from 0, an extra care needs to be taken. We consider a regulated Bessel process which is reflected at some positive constant \overline{z} . Intuitively, by doing so, we are putting an upper bound for $E\left[e^{-\rho T_n^z}\right]$, as the reflection makes z_t to hit n^{-1} more likely (therefore, a larger \mathbf{F}^z). Also, for a sufficiently small $\overline{z} > 0$, when $z \in (0, \overline{z}]$, z follows a Bessel process with a dimension $\gamma + 2 - \varepsilon$. Therefore, \mathbf{F}^z must be bounded by the first-hitting time distribution of a Bessel process with a dimension δ , where δ takes value from $\gamma + 2 - \epsilon$ to $\gamma + 2$, where ϵ is sufficiently small. Finally, note that by considering a Bessel process we are neglecting certain drift for z. However, one can easily check that when z is close to 0, the adjustment term for μ_y is $-\frac{1+l}{\rho}\gamma\sigma^2 < 0$. This implies that we are neglecting a positive drift for z—which potentially makes hitting less likely—thereby yielding an upper-bound estimate.

We have the following Lemma from the Bessel process.

LEMMA 1: Consider a Bessel process x with $\delta > 2$ which is reflected at $\overline{x} > 0$. Let $\nu = \frac{\delta}{2} - 1$. Starting from $x_0 \leq \overline{x}$, we consider the hitting time $T_n^x = \inf \{t : x_t = \frac{1}{n}\}$. Then we have

$$E\left[e^{-\rho T_n^x}\right] \propto n^{-2\nu} as n \to \infty$$

PROOF:

Due to the standard results in Bessel process and the Laplace transform of the hitting time (e.g., see Borodin and Salminen (1996), Chapter 2), we have

$$E\left[e^{-\rho T_{n}^{z}}\right] = \varphi\left(z_{0}\right)/\varphi\left(n^{-1}\right),$$

where

$$\varphi(u) = c_1 u^{-\nu} I_v \left(\sqrt{2\rho} u\right) + c_2 u^{-\nu} K_v \left(\sqrt{2\rho} u\right),$$

and $I_v(\cdot)$ (and $K_v(\cdot)$) is modified Bessel function of the first (and second) kind of order v. Because R is a reflecting barrier, the boundary condition is

$$\varphi'\left(\overline{z}\right) = 0,$$

which pins down the constants c_1 and c_2 (up to a constant multiplication; notice that this does not affect the value of $E\left[e^{-\rho T_n^z}\right]$). Therefore the growth rate of $E\left[e^{-\rho T_n^z}\right]$ is determined by $n^{\nu}K_v\left(\sqrt{2\rho}n^{-1}\right)$ as K_v dominates I_v near 0. Since $K_v(z)$ has a growth rate $z^{-\nu}$ when $z \to 0$, the result is established.

For any y_0 , redefine starting point as $z_0 = \min(1 + l - y_0, \overline{z})$; clearly this leads to an upper-bound estimate for $E\left[e^{-\rho T_n^z}\right]$. However, since for all $\delta \in$ $[\gamma + 2 - \epsilon, \gamma + 2]$, the above Lemma tells us that for any $\varepsilon \in [0, \epsilon]$, given $\gamma = 2$ and h = 0.9, when $n \to \infty$, for some sufficiently small $\epsilon > 0$ we have

$$n^{(\gamma-1)(1+h)} E\left[e^{-\rho T_n^z}\right] \propto n^{(\gamma-1)(1+h)} n^{-2\nu} = n^{(\gamma-1)(1+h)-\gamma+\varepsilon} \to 0 \text{ uniformly.}$$

Therefore we obtain our desirable result.

Finally $c_t\xi_t > 0$ implies that $\int_0^\infty c_t\xi_t dt$ converges monotonically, and therefore the specialist's budget equation $\lim_{T\to\infty} E\left[\int_0^T \xi_t c_t dt\right] = \xi_0 D_0 (F_0 - y_0)$ holds for all stopping times that converge to infinity. Q.E.D.

II. Appendix for Section 6

A. Borrowing Subsidy

We have the same ODE as in Appendix A. The only difference is that

$$\mu_y = \frac{1}{1 - \theta_s F'} \left(\theta_s + l + (r + \sigma^2 - g)\hat{\theta}_b - \hat{\theta}_b \Delta r - \rho y + \frac{1}{2}\theta_s F'' \sigma_y^2 \right).$$

B. Direct Asset Purchase

In this case, the intermediary holds 1-s of the risky asset (where s is a function of (y, D)). In the unconstrained region, $\alpha^h = 1$, and

$$\frac{\alpha^{I}\left(w+\alpha^{h}\left(1-\lambda\right)w^{h}\right)}{P} = 1-s$$

which implies that $\alpha^I = \frac{(1-s)F}{F-\lambda y}$. Therefore the households' holding of the risky asset through intermediaries is

$$\theta_s^I = \frac{(1-s)(1-\lambda)y}{F-\lambda y}$$

and the total holding is $\theta_s = \theta_s^I + s = \frac{(1-s)(1-\lambda)y}{F-\lambda y} + s(y, D)$. In the constrained region, $\alpha^h = \frac{m(F-y)}{(1-\lambda)y}$ and $\alpha^I = \frac{1}{1+m} \frac{(1-s)F}{F-y}$. So

$$\theta_s^I = \frac{m(F-y)}{(1-\lambda)y} \frac{1}{1+m} \frac{(1-s)F}{F-y} (1-\lambda)\frac{y}{F} = \frac{m}{1+m} (1-s)$$

and the total holding is

$$\theta_s = \frac{m}{1+m} (1-s) + s = \frac{m+s}{1+m}.$$

The same constraint cutoff applies $y^c = \frac{m}{1-\lambda+m}F^c$.

Finally, the expressions for the case of capital infusion (i.e., changing m) is isomorphic to the case of s > 0. This is because given s we can find some appropriate $m'(s) = \frac{s+m}{1-s}$ such that $\frac{m'}{1+m'} = \frac{m+s}{1+m}$.