Intermediary Asset Pricing: Online Appendix

By ZHIGUO HE AND ARVIND KRISHNAMURTHY *

I. Verification of optimality

In this section we take the equilibrium Price/Dividend ratio F'(y) as given,
and verify that the specialist’s consumption policy ¢ = Dy (1 + 1 — ;) is optimal
subject to his budget constraint. Our argument is a variant of the standard one:
it uses the strict concavity of u (-) and the specialist’s budget constraint to show
that the specialist’s Euler equation is necessary and sufficient for the optimality
of his consumption plan.

Specifically, fixing t = 0 and the starting state (yo, Do), define the pricing kernel
as
G=e e =D (141 py) .

Consider another consumption profile ¢ which satisfies the budget constraint
E [fooo /c\tﬁtdt] < & Do (Fy — yo) (recall that the specialist’s wealth is Dy (Fo — yo);
here we require that the specialist’s feasible trading strategies be well-behaved,

e.g., his wealth process remains non-negative). Then we have

E [ /0 Tty (ct)dt] > B [ /0 T ety (Et)dt] VE [ /0 T et (c)) (ct—a)dt}

= E [/OOO e—f’tu(’c})dt] +F Vooogtctdt] - E Uooogtadt] .

If the specialist’s budget equation holds in equality for the equilibrium consump-
tion process c, i.e., if

E [/OO &ctdt} = &oDo (Fo — yo)
0

then the result follows. Somewhat surprisingly, for our model this seemingly

obvious claim requires an involved argument because of the singularity at y® =
141
=
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One can easily check that, for VI' > 0, we have

T T
(1) &Do(Fo —yo) = / cr&edt + / o (Dy,y) dZy + &rDr (Fr — yr)
0 0

where o (D¢, y¢) corresponds to the specialist’s equilibrium trading strategy (which
involves terms such as (141 — py)_w_1 and is NOT uniformly bounded as y —
y?). Our goal in the following steps is to show that in expectation, the latter two
terms vanishes when 7' — oo.

STEP 1: LIMITING BEHAVIOR OF y AT 3°

The critical observation regarding the evolution of ¥ is that when y approaches
y?, it approximately follows a Bessel process with a dimension § = v + 2 > 2.
(Given a d-dimensional Brownian motion Z, a Bessel process with a dimension

d is the evolution of || Z|| = \/Zle Z?2, which is the Euclidean distance between

Z and the origin.) According to standard results on Bessel processes, ¢ is an
entrance-no-exit point, and is not reachable if the starting value yo < y° (if § > 2).
Intuitively, when y is close to 3°, the dominating part of [y is proportional to
yjyb < 0, while the volatility o, is bounded— therefore a drift that diverges to
negative infinity keeps y away from the singular point y°. This result implies that
our economy never hits 1.

To show that for y close to 3°, y’s evolution can be approximated by a Bessel

Process, one can easily check that when y — 3°,

1 2 héG 1 2 héQGQ .
SO 5 AL ORI ) L LS P
2 1+1—phy 2 1+1—phy

and therefore s o
(v+1)o* pb;G .
= — dt — GobydZ,.
dy 5 T+1—py GobydZ,

Utilizing the result F’ (yb) = 1 established in Section ??, we know that when

y — 1P, ébgF—Hsyzﬁyb:ﬁ%l,andGzl—km. Let

ze =1+ 1 — pys;

then it is easy to show that ¢ = evolves approximately according

to

z — z

Gaébp o(1+1)
_(y+1)

~ Ay =

Gob, 2qt

which is a standard Bessel process with a dimension § = v + 2. Therefore, z is

also a scaled version of a Bessel process, and can never reach 0 (or, y cannot reach
y?). In the following analysis, we focus on the limiting behavior of z.

dqt: - dt—|—dZt,
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STEP 2: LOCALIZATION

Note that in (1), due to the singularity at y = y°, both the local martingale
part fOT o (D¢, yt) dZ; and the terminal wealth part & Dp (Fr — yr) are not well-
behaved. To show our claim, we have to localize our economy, i.e., stop the
economy once either y is sufficiently close to y® or D is sufficiently close to 0.
Specifically, we define

T,, = inf {t :either zz =n~' or D; = n_h}

where h is a positive constant (as we will see, the choice of h, which is around 1,
gives some flexibility for v other than 2). Here, because y and z have a one-to-one
relation (z = 141 — py), for simplicity we localize z instead.

Clearly this localization technique ensures that the local martingale part fOT" o (D, ye) dZy
is a martingale (one can check that o (Dy,y;) is continuous in Dy and y;, in turn
D, and zy; therefore o (Dy,y;) is bounded). As T,, — oo when n — oo, for our
claim we need to show

lim E [¢r, Dr,, (Fr,, —yr,)] =0
n—oo
We substitute from the definition of &:

E [T Dy 2 (F (yr,) = yr,)| < B [T 070200 (F (yr,) -y,

n

Since the analysis will be obvious if z=7 (F (y) — y) is uniformly bounded (notice

here = = 1 +1 — py), it is sufficient to consider zr, = 1 (or, y5,, = y° — nip

). Because F (yb) = ¢® and F’ (yb) = 1, by Taylor expansion we know that

F (yb — nip) — (yb — n%)) can be written as 1 (n) % when n is sufficiently large,

and 1 (n) — 0 as n — oco. Therefore we have to show that, as n — oo,
E [e—ann(v—l)(lJrh)] Y (n) —0

and a sufficient condition is that there exists some constant M so that

B [e ] n=D0+0) 3,

We apply existing analytical results in the literature to show our claim. To do
so, we have to separate our two state variables. We define

TP :inf{t:Dt:n_h},T; =inf {t: % :n_l}.
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We want to bound E [e‘an] by the sum of F [e"’nﬂ and F [e—prL]' The
Laplace transform of T}, is simply

E[e?T] = / e PTdF (T) = p / e TF (T)dT,
0 0

where the bold F denotes the distribution function of 7;,. The similar relation

also holds for TP or T7?. Denote F” (-) (or F(-)) as the distribution function for

TP (or T?), and notice that

1-F(T) = Pr(T,>T)=Pr (TP >T, 7 >T) >Pr (TP > T)Pr (T > T)
1 - FP(T) -~ F*(T) + FP (T) F* (1),

because 1irp-ry and lyre>7y are positively correlated (both take the value 1

when the Brownian Z is high).! Therefore F (T) < FP (T) + F*(T), or

E [T -4 < | [e—pT,P} nO~DA4R) 4 B [¢=rTE] =D+,

Our goal is to show the right hand side of the above inequality goes to zero when
n — o0.

There are two terms in the right hand side of the above inequality. For the first
term, we can use the standard result of the Laplace transform of the first-hitting
time distribution for a GBM process (e.g., Borodin and Salminen (2002), page

622):
o8] o (T 0

Thus, by choosing some appropriate h so that

h
o3 <\/2p02 + (g —0.502)* + g — 0.502> >(y—=1)(1+h),

the first term E [e*pr? } nO~DA+h) vanishes as n — oo. For instance, this con-

dition holds when A = 0.9 under our parameterization. The next step is for the
second term.

STEP 3: REGULATED BESSEL PROCESS
For the second term £ [e*pTﬁ] n(y=D+R) “because our economy (i.e., evolution

1 Technically, using the technique of Malliavian derivatives, we can show that both z; and Dg
have positive diffusions in the martingale representations for all s. Then, the running minimum z; =
min{z; : 0 <t < T} and Dy = min{D; : 0 < t < T} have positive loadings always on the martingale
representations (using the technique in Methods of Mathematical Finance, Karatzas and Shreve (1998),
Page 367). The same technique can be applied to 1{T5>T} = 1{£T>T} and I{TT’? >T} = 1{QT>T}’ as

an indicator function can be approximated by a sequence of differentiable increasing functions.



VOL. VOLUME NO. ISSUE INTERMEDIARY ASSET PRICING: ONLINE APPENDIX 5

of z) differs from the evolution of a Bessel process when z is far away from 0,
an extra care needs to be taken. We consider a regulated Bessel process which
is reflected at some positive constant z. Intuitively, by doing so, we are putting
an upper bound for FE [e_anz], as the reflection makes z; to hit n~! more likely
(therefore, a larger F#). Also, for a sufficiently small Z > 0, when z € (0,%], z
follows a Bessel process with a dimension v+2—¢. Therefore, F? must be bounded
by the first-hitting time distribution of a Bessel process with a dimension ¢, where
0 takes value from y+2—¢€ to v+ 2, where € is sufficiently small. Finally, note that
by considering a Bessel process we are neglecting certain drift for z. However,
one can easily check that when z is close to 0, the adjustment term for p, is
— 1452 < 0. This implies that we are neglecting a positive drift for z—which
potentially makes hitting less likely—thereby yielding an upper-bound estimate.

We have the following Lemma from the Bessel process.

LEMMA 1: Consider a Bessel process x with § > 2 which is reflected at T >
0. Letv = % — 1. Starting from zo < T, we consider the hitting time T} =

inf {t P X = %} Then we have
E [e_pTTf] xn % asn — oo

PROOF:

Due to the standard results in Bessel process and the Laplace transform of the
hitting time (e.g., see Borodin and Salminen (1996), Chapter 2), we have

E[e7Ti] = ¢ (z0) o (n7),

where
o (u) =cu "I, <\/>u> + cou VK, <\/>u)

and [, () (and K, (-)) is modified Bessel function of the first (and second) kind
of order v. Because R is a reflecting barrier, the boundary condition is

¢ (z) =0,

which pins down the constants ¢; and ¢a (up to a constant multiplication; notice
that this does not affect the value of E [e_pTi]). Therefore the growth rate of
E [e*pTﬁ] is determined by n" K, (f n- ) as K, dominates I, near 0. Since
K, (z) has a growth rate 2~ when z — 0, the result is established.

For any yo, redefine starting point as zp = min (1 +1 — yp,2z); clearly this
leads to an upper-bound estimate for E [e‘pTﬁ]. However, since for all § €
[v+ 2 — €, + 2|, the above Lemma tells us that for any ¢ € [0, €], given v = 2
and h = 0.9, when n — oo, for some sufficiently small ¢ > 0 we have

nO—D+h) g [e*pTé] oc p DR =20 — p (y=D(A+h)=r+e _,  yniformly.
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Therefore we obtain our desirable result.
Finally ¢;& > 0 implies that fooo ctédt converges monotonically, and therefore

the specialist’s budget equation Tlim E [ fOT ftctdt} = &oDo (Fo — yp) holds for all
— 00
stopping times that converge to infinity. Q.E.D.

II. Appendix for Section 6
A.  Borrowing Subsidy
We have the same ODE as in Appendix A. The only difference is that

1

. 1
=T (65 +14 (r+ 0% = g)0y — OpAr — py + 29sF"U§> :

B. Direct Asset Purchase

In this case, the intermediary holds 1—s of the risky asset (where s is a function
of (y, D)). In the unconstrained region, o = 1, and
ol (w+al (1= X)wh)
P

=1-—s

which implies that a! = (};_8/\)F. Therefore the households’ holding of the risky
y

asset through intermediaries is

(=9 1-y
s F—)\y ’

and the total holding is 0, = 9§ + s = w + s (y, D).

In the constrained region, a” = % and of = ﬁ (:FE?UF. So

g mE-y) 1 (1-9F
o (1-XNyl+m F-y

A=X)f =1 (1-9)

and the total holding is

m m+ s
Oy = —— (1 = .
Gt A

The same constraint cutoff applies y¢ = %F €.

Finally, the expressions for the case of capital infusion (i.e., changing m) is

isomorphic to the case of s > 0. This is because given s we can find some
. ’
appropriate m’ (s) = 52 such that T = ;rj:;z




