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This appendix is organized as follows. In Appendix A we provide more details on our data

and on alternative methods for inferring markups and for inferring producer-level productivity. In

Appendix B we provide further details of the robustness experiments mentioned in the main text

as well as related sensitivity analysis. In Appendix C we provide further details on three more

substantial extensions of our benchmark model, namely: (i) a dynamic model with endogenous

capital accumulation and labor supply, (ii) asymmetric countries that differ in size and/or economy-

wide productivity, and (iii) a free-entry model with an endogenous number of competitors per sector.

A Data

A.1 Data description and product classification

We use the Taiwan Annual Manufacturing Survey. Our sample covers the years 2000 and 2002–2004.

The year 2001 is missing because in that year a separate census was conducted. The dataset we use

has two components. First, an establishment-level component collects detailed information on oper-

ations, such as employment, expenditure on labor, materials and energy, and total revenue. Second,

a product-level component reports information on revenues for each of the products produced at a

given establishment. Each product is categorized into a 7-digit Standard Industrial Classification

created by the Taiwanese Statistical Bureau. This classification at 7 digits is comparable to the

detailed 5-digit SIC product definition collected for US manufacturing establishments as described

by Bernard, Redding and Schott (2010). Panel A of Table A1 gives an example of this classification

while Panel B reports the distribution of 7-digit sectors within 4- and 2-digit industries. Most of the

products are concentrated in the Chemical Materials, Industrial Machinery, Computer/Electronics

and Electrical Machinery industries.

A.2 Firm-level moments

The Taiwanese manufacturing sector is dominated by single-establishment (single-plant) firms. In

our data, 98% of firms are single-plant firms and these firms account for 92% of total manufacturing

sales. Consequently, whether we choose firms or plants as our unit of analysis makes little difference

for our analysis. As reported in Table A2, our key micro and sectoral concentration moments are

very similar whether we use firms or plants. We use plant-level data for our benchmark model

because it is the natural unit of analysis at which to measure a producer’s production technology.

A.3 Alternative markup estimates based on IO methods

In our model, as is standard in the trade literature, labor is the only factor of production and a

producer’s inverse labor share is its markup. But in comparing our model’s implications for markups

to the data, it is important to recognize that, in general, factor shares differ across producers not

only because of markup differences but also because of differences in the technology with which

they operate. To control for this potential source of heterogeneity, we use modern IO methods
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to purge our markup estimates of the differences in technology that surely exist across Taiwanese

manufacturing industries.

Controlling for heterogeneity in producer technology. To map our model into micro-level

production data, we relax the assumptions of a single factor of production and constant returns

to scale. In particular, we follow De Loecker and Warzynski (2012) and assume a translog gross

production function

log yi = αl log li +αk log ki + αm logmi + αll(log li)
2 + αkk(log ki)

2 + αmm(logmi)
2

+αlk(log li log ki) + αlm(log li logmi) + αkm(log ki logmi) + log ai ,

where li denotes labor, ki denotes physical capital, mi denotes material inputs and ai is physical

productivity. The translog specification serves as an approximation to any twice continuously

differentiable production function in these inputs and allows the elasticity of output with respect

to any variable input, say labor, to differ across firms within the same sector.

We estimate this translog specification for each 2-digit Taiwanese industry, giving us industry-

specific coefficient estimates. Let el,i denote the elasticity of output with respect to labor

el,i :=
∂ log yi
∂ log li

= αl + 2αll log li + αlk log ki + αlm logmi . (1)

Cost minimization then implies that producer i sets

Wli
piyi

=
el,i
µi

. (2)

Thus variation in labor input cost shares across producers may be due to either variation in markups

µi or to variation in output elasticities el,i. We use data on labor input cost shares and production

function estimates of el,i to back out markups µi from (2).

Controlling for simultaneity. As is well-known, a key difficulty in estimating production func-

tions is that input choices li, ki,mi will generally be correlated with true productivity ai. We follow

De Loecker and Warzynski (2012) and apply ‘control’ or ‘proxy function’ methods inspired by Olley

and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg, Caves and Frazer (2006) to deal

with this simultaneity.

More specifically, we write the measurement equation for the translog production function as

log ydit = αl log lit +αk log kit + αm logmit + αll(log lit)
2 + αkk(log kit)

2 + αmm(logmit)
2

+αlk(log lit log kit) + αlm(log lit logmit) + αkm(log kit logmit)

+ log ait + ε̃it ,

where ydit is output in the data and where ε̃it is IID noise.

Our approach to estimating the production function closely follows the procedure in Ackerberg,

Caves and Frazer (2006) (and in particular we follow their timing assumptions that rationalize a

mapping from a firm’s capital kit, labor lit and productivity ait to its demand for materials). To be

specific, we:
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1. Write the so-called control function as

mit = f(kit, lit, ait) ,

where, as is standard in the literature, we assume that this function can be inverted to uniquely

determine a level of productivity associated with a given configuration of observed inputs, so

that we can write

log ait = g(kit, lit,mit) .

We can then write the conditional mean of measured log output as

h(kit, lit,mit) = αl log lit +αk log kit + αm logmit + αll(log lit)
2 + αkk(log kit)

2 + αmm(logmit)
2

+αlk(log lit log kit) + αlm(log lit logmit) + αkm(log kit logmit)

+ g(kit, lit,mit) ,

so that log output in the data is simply

log ydit = h(kit, lit,mit) + ε̃it ,

and we can estimate the conditional mean function h(·) by high-order polynomials. Given

the nonparametric function g(·) on the right-hand-side of the conditional mean, no structural

parameters of production function can be identified at this stage. The purpose of this repre-

sentation is to isolate the measurement/transitory shock component ε̃it which is orthogonal

to all inputs at time t.

2. Let α := (αl, αk, αm, αll, αkk, αmm, αlk, αlm, αkm) denote the parameters of the production

function and let ĥit(α) := ĥ(kit, lit,mit,α) denote the fitted values for some candidate param-

eter vector α. This implies an estimate of log productivity

âit(α) = ĥit(α)− αl log lit−αk log kit − αm logmit − αll(log lit)
2 − αkk(log kit)

2 − αmm(logmit)
2

−αlk(log lit log kit)− αlm(log lit logmit)− αkm(log kit logmit) ,

Estimating the parameters α then depends on specific parametric assumptions about the

data generating process for ait and in particular on how it evolves over time. As in standard

literature, we assume that log productivity follows a flexible AR(1) process

âit(α) = φ(âit−1(α)) + ζait(α) ,

where φ(·) is a second-order polynomial.

3. Use GMM to estimate the parameter vector α. As in the dynamic panel literature, we exploit

the sequential exogeneity condition that ζait(α) is uncorrelated with a vector of lagged input

variables, specifically

zit :=
[

log lit−1 , log kit , logmit−1,

(log lit−1)
2 , (log kit)

2 , (logmit−1)
2,

(log lit−1 log kit) , (log lit−1 logmit−1) , (log kit logmit−1)
]
.
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Note that, as is standard in this literature, capital enters without a lag since it is assumed to

be pre-determined.

With estimates of the production function parameters α̂ in hand, we then use data on inputs

kit, lit,mit to calculate estimated output elasticities for each input êl,i, êk,i, êm,i, as in (1), and then

use the optimality condition (2) to recover estimated ‘inverse markups’ 1̂/µi.

Production function estimates. In Table A3, we report the median output elasticities and

returns to scale for each of 21 Taiwanese manufacturing industries along with the inter-quartile

range of output elasticities across producers within the same industry. Several points are worth

noting: First, there is modest variation in output elasticities either within or across industries.

For example, the 25th percentile of êl,i within industries is typically around 0.15 while the 75th

percentile is typically around 0.4 with the standard deviation of median êl,i across industries being

0.04. Second, the median returns to scale within each industry is very close to 1 for almost all

industries. In addition, the variation in returns to scale across producers within an industry is

small, with the 25th percentile around 0.98 and the 75th percentile around 1.04. Third, the ranking

of capital intensity across industries is intuitive, with Petroleum, Chemical Material, Computer,

Machinery Equipment the most capital intensive, and Wood, Leather, Motor Vehicle Parts, Apparel

the least.

Markup estimates. Given these estimates of êl,i for each producer for each industry, we recover

1̂/µi from (2). Panel A of Table A4 reports summary statistics of the distribution of markups

obtained in this way. The estimated markups are highly dispersed, the 95th percentile markup is

nearly 2.5 times the median markup and the 99th percentile markup is nearly 5 times the median.

We also report the sector-level counterparts of these markup statistics; in accordance with the

model, we measure sector-level markups as the revenue-weighted harmonic average of producer

markups within a given sector. The sector-level markups are similarly dispersed.

Panel B of Table A4 reports the coefficient we obtain from regressing the De Loecker and

Warzynski (2012) measured inverse markups 1̂/µi on observed market shares ωi using samples of

single-product and multi-product producers. The market share coefficient is in a tight range around

−0.66 to −0.69 across these regressions.

We also report moments for projected markups. These are moments of the inverse of the fitted

values from the regression of 1̂/µi on ωi which we normalize by setting the intercept equal to its

theoretical value (the markup level does not affect allocations in our benchmark model). These

projected markups are less dispersed, the 95th percentile sectoral markup is about 1.5 times the

median and the 99th percentile is about 2.5 times the median.

Implications for the gains from trade. When we calibrate the model to match this regression

of 1̂/µi on ωi (along with our usual targets) we obtain γ = 10, θ = 1.28 (very similar to their

benchmark values of 10.5 and 1.24 respectively), along with similar values for the other parameters
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(ξx = 4.53 vs 4.58, ξz = 0.56 vs 0.51, ζ = 0.043 vs 0.043, fd = 0.004 vs 0.004, fx = 0.211 vs 0.203,

τ = 1.128 vs 1.129, and ρ = 0.93 vs 0.94). Given the very similar calibrated parameter values, it is

not then surprising that this version of the model, calibrated to the alternative markup estimates,

also implies very similar gains from trade. Specifically, it implies total gains from trade of 12% of

which 1.8% are pro-competitive gains, very similar to the benchmark values of 12.4% and 2%. Thus

we conclude that these alternative markup estimates lead to similar conclusions about the gains

from trade.

A.4 Nonparametric productivity distribution

We now show how to use our model to recover the exact nonparametric distribution of producer-level

productivity ai(s) given data on producer market shares ωi(s). This procedure uses the structure

of the model, but makes no parametric assumptions about the distribution of productivity.

The main idea is fairly intuitive: we simply back out for each producer and sector the produc-

tivity draws that are needed to rationalize that producer’s and sector’s relative size. To do this,

begin by recalling that for producer i in sector s the inverse markup is given by

1

µHi (s)
=
γ − 1

γ
−
(

1

θ
− 1

γ

)
ωH
i (s) , (3)

and that we can write the market share ωH
i (s) as

ωH
i (s) =

pHi (s)1−γ∑
i p

H
i (s)1−γ + τ1−γ ,

∑
i p

F
i (s)1−γ

or

ωH
i (s) =

pHi (s)1−γ∑
i p

H
i (s)1−γ

×
∑

i p
H
i (s)1−γ∑

i p
H
i (s)1−γ + τ1−γ

∑
i p

F
i (s)1−γ

,

or

ωH
i (s) = ω̃H

i (s)× (1− ωF(s)) ,

where ω̃H
i (s) is producer i’s share of sales among only domestic firms in sector s and 1 − ωF(s) is

the share of spending on domestic firms in that sector. Both of these terms come directly from the

data. The first term can be written

ω̃H
i (s) =

(
µHi (s)/ai(s)

)1−γ∑
i

(
µHi (s)/ai(s)

)1−γ (4)

where we simply use the definition of the markup to write pHi (s) = µHi (s)W/ai(s). Thus, given

parameter values γ and θ, we can use an iterative procedure to recover the ai(s) of domestic

producers that exactly rationalizes the observed market share data ωH
i (s) and 1 − ωF(s). The

iterations are as follows:

1. Given data on ωH
i (s) and ωF(s), calculate µHi (s) and ω̃H

i (s) from (3) and (4).
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2. Guess productivities a0i (s). Then update the guess a0i (s)→ a1i (s) by iterating on the mapping

ak+1
i (s) =

(
1

ω̃H
i (s)

µHi (s)1−γ∑
i

(
µHi (s)/aki (s)

)1−γ
) 1

1−γ

, k = 0, 1, . . .

and iterate on this until convergence.

To further compute z(s), we repeat this argument at the sectoral level. Specifically, we use

ωH
i (s) =

(
pHi (s)

p(s)

)1−γ

,

thus

p(s) =

(∑
i

(
µHi (s)

xi(s)z(s)

)1−γ) 1
1−γ

=:
ΞH(s)

z(s)
,

where we have already recovered ΞH(s) in the previous within-sector iteration, that is

ΞH(s) =

(∑
i

(
µHi (s)

xi(s)

)1−γ) 1
1−γ

.

Finally, note that the sectoral share ω(s) = (p(s)/P )1−θ, thus we can again use an iterative proce-

dure to find z(s) using observed data of sectoral expenditure shares

ω(s) =
(ΞH(s)/z(s))1−θ∫ 1

0 (ΞH(s)/z(s))1−θ ds
.

Since we are primarily interested in the tail properties of the recovered nonparametric produc-

tivity distribution, we calculate standard measures of the tail exponent of the recovered distribution

and compare this summary statistic to its counterpart in our benchmark model, i.e., our original

Pareto shape parameter.

Specifically, to estimate the tail exponent implied by the recovered distribution we follow Gabaix

and Ibragimov (2011) and run a log-rank regression. The basic idea is that for any power law

distributed randomly distributed data, we have

log(r − r̄) = constant− ξx logX(r) + noise

where r is the ranking of observation X(r). The slope coefficient ξ̂x then corresponds to the Pareto

shape parameter. Gabaix and Ibragimov suggest using the correction r̄ = 1/2 to reduce small-

sample bias, but our results are almost identical when we use r̄ = 0. Our estimate implies a shape

parameter ξ̂x = 3.46 with a standard error 0.02.

We apply the same regression to sectoral productivity1 Z(r), and find an estimate ξ̂z = 0.27

with a standard error 0.01. Both cases indicate that, if anything, the nonparametric productivity

distribution is fatter tailed than our benchmark Pareto distribution (which has ξx = 4.58 and

ξz = 0.51). Our benchmark results are thus conservative in the sense that, if anything, we somewhat

understate the amount of misallocation in the data.
1We leave out the bottom 25% of sectoral observations, these look more lognormal and our interest here is in the

right tail of the distribution. We find ξ̂z = 0.14 if we include all sectoral observations.
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B Robustness experiments and sensitivity analysis

Here we provide further details of the robustness experiments reported in the main text along with

related sensitivity analysis. Unless stated otherwise, for each experiment we recalibrate the trade

cost τ , export fixed cost fx, and correlation parameter ρ so that the Home country continues to

have an aggregate import share of 0.38, fraction of exporters 0.25 and trade elasticity 4, as in our

benchmark model. The full set of parameters used for each experiment are reported in Table A5.

The target moments and the moments implied by each model are reported in Table A6. The gains

from trade and statistics on markup dispersion for each model are reported in Table A7.

B.1 Alternative model with correlated xi(s), x
∗
i (s)

For this experiment (which we refer to in the main text as our alternative model), we allow for

cross-country correlation in both sectoral productivity draws and in idiosyncratic producer-level

productivity draws. Specifically, we assume HZ(z, z∗) = CZ(FZ(z), FZ(z∗)) and HX(x, x∗) =

CX(FX(x), FX(x∗)) both linked via a Gumbel copula but with distinct correlation coefficients, ρz

and ρx. As in the benchmark model, we choose the sectoral correlation ρz so that the model implies

a trade elasticity of 4. We choose the cross-country correlation in idiosyncratic draws ρx so that

the model reproduces the cross-sectional relationship between domestic producer concentration and

import penetration that we see in the data, i.e., that sectors with high import penetration are also

sectors with relatively high concentration amongst domestic producers. As shown in the last row

of Table A6, our benchmark model implies a mild association, the slope coefficient in a regression

of sector import penetration on sector domestic HH indexes is 0.14, a bit low relative to the 0.21

in the data. To match this regression coefficient, the preferred model needs a slight amount of

cross-country correlation in in idiosyncratic draws, ρx = 0.05 (with a correspondingly slightly lower

correlation in sectoral draws, ρz = 0.93). This version of the model otherwise fits the data about

as well as the benchmark model. As shown in Table A7, it implies slightly larger pro-competitive

gains from trade.

B.2 Labor wedges

For this experiment we assume there is a distribution of producer-level labor market distortions

that act like labor input taxes, putting a wedge between labor’s marginal product and its factor

cost. Specifically, we assume a producer with productivity a faces an input tax

t(a) :=
aτl

1 + aτl
,

and pays (1 + t(a))W for each unit of labor hired. The price a Home producer with productivity

ai(s) sets in its domestic market is then

pHi (s) =
( εHi (s)

εHi (s)− 1

) 1 + t(ai(s))

ai(s)
W , (5)
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where εHi (s) > 1 is the demand elasticity facing the firm in its domestic market, which satisfies the

same formula as in the main text.

We calibrate the sensitivity parameter τl so that our model matches the ratio of the average

producer labor share to the aggregate labor share that we observe in the data. In the data, the

average producer labor share is 1.35 times the aggregate labor share. This requires τl = 0.001,

implying that the labor taxes and productivity are positively related, albeit weakly so. As shown

in Table A7, the gains from trade and the pro-competitive gains from trade are quite similar to the

benchmark model.

B.3 Heterogeneous tariffs

For this experiment we assume that in each sector s there is a distortionary tariff t(s), common to

every firm in that sector. For simplicity we assume that the tariff revenues are rebated lump-sum

to the representative consumer.

The price a Home producer with productivity ai(s) sets in its domestic market is then

pHi (s) =
1

1− t(s)

( εHi (s)

εHi (s)− 1

) W

ai(s)
, (6)

We assume that the tariffs t(s) ∈ [0, 1] are drawn IID beta(a, b) across sectors. We estimate the

parameters of this beta distribution by maximum likelihood using detailed tariff data for Taiwanese

7-digit manufacturing sectors. The maximum likelihood point estimates are a = 2.3 and b = 35,

implying a quite skewed distribution with mean tariff of a/(a+ b) = 0.062 and a standard deviation

of
√
ab/((a+ b)2(a+ b+ 1)) = 0.039. Figure 1 plots the empirical histogram of tariffs in the

Taiwanese data against the density function of a beta distribution with these parameters. As

reported in Table A7, the total gains from trade are somewhat larger than in the benchmark while

the pro-competitive gains are unchanged.

B.4 Bertrand competition

For this experiment we re-solve the model under the assumption that producers compete by simulta-

neously choosing prices (Bertrand) rather than simultaneously choosing quantities (Cournot). This

changes the model set-up in only one way. The demand elasticity facing producer i in sector s is no

longer a harmonic weighted average, of θ and γ but is instead a simple arithmetic weighted average,

εi(s) = ωi(s)θ + (1− ωi(s)) γ. With this specification the results are similar to the benchmark.

The Bertrand model implies somewhat lower markup dispersion than the Cournot model but also

implies a larger change in markup dispersion when opening to trade — and hence a larger reduction

in misallocation.

One problem with the Bertrand model is that it implies a negative correlation between do-

mestic sectoral concentration and domestic import penetration, i.e., in the Bertrand model highly

concentrated sectors tend to have low import penetration, the opposite of what we see in the data.
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Figure 1: Distribution of tariff rates t(s) across 7-digit Taiwanese manufacturing sectors
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B.5 Role of γ

For our benchmark calibration procedure we obtain γ = 10.5. To see what features of the data

determine this value, we have recalibrated our model with a range of alternate values for γ.

For example, with a much lower value of γ = 5 we find that the model cannot produce a trade

elasticity of 4 — even setting ρ = 0.999 (effectively perfect correlation) gives a trade elasticity of

only 3.59. In addition, as shown in the last few rows of Table A6, with γ = 5 the model also implies

too much intraindustry trade, too little import share dispersion, and too strong an association

between sector import shares and size. At the other extreme, with a much higher value of γ = 20,

the model can better match the trade elasticity and facts on intraindustry trade and import share

dispersion, but now produces too weak an association between sector import shares and size as well

as too strong an association between sector concentration and import penetration.

In short, low values like γ = 5 and high values like γ = 20 are at odds with key features of

the data. In trying to match these moments, our calibration procedure selects the value γ = 10.5.

Importantly, as shown in Table A7, our model’s implications for the gains from trade do not change

dramatically even for these extreme values of γ. For example, with γ = 5 the model implies that

the total gains are 16.6% of which 2.7% are pro-competitive gains. With γ = 20 the model implies

that total gains are 11.8% of which 1.4% are pro-competitive gains.

B.6 No fixed costs

For this experiment, we solve our model assuming that fixed costs are zero, fd = fx = 0. In this

version of the model, all producers operate in both markets. Thus the number of domestic producers

in each country in sector s is just given by the geometric draw n(s) for that sector.
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As shown in Table A7, this version of the model yields almost identical gains from trade as

the benchmark. Shutting down these extensive margins makes little difference because the typical

firm near the margin of operating or not is very small and has negligible impact on the aggregate

outcomes.

B.7 Gaussian copula

For this experiment we resolve the model using a Gaussian copula to model the cross-country

correlation in sectoral productivity draws, specifically

C(u, u∗) = Φ2,r(Φ
−1(u),Φ−1(u∗)) (7)

where Φ(x) denotes the CDF of the standard normal distribution and Φ2,r(x, x
∗) denotes the stan-

dard bivariate normal distribution with linear correlation coefficient r ∈ (−1, 1). To compare re-

sults to the benchmark Gumbel copula, we map the linear correlation coefficient into our preferred

Kendall correlation coefficient, which for the Gaussian copula is ρ = 2 arcsin(r)/π. To match a trade

elasticity of 4 requires ρ = 0.99, up from the benchmark 0.94. As shown in Table A7, this version

of the model yields very similar results to our benchmark model. In this sense, the functional form

of the copula per se does not seem to matter much for our results, instead, as discussed at length in

the main text, it is the amount of correlation ρ in cross-country productivity draws that matters.

B.8 Uncorrelated n(s), n∗(s)

For this experiment, for each sector s we independently draw n(s) producers for the Home country

and n∗(s) producers for the Foreign country (each drawn from the same geometric marginal distri-

bution as in the benchmark model). With independent draws for n(s), n∗(s) we find that the model

cannot produce a trade elasticity of 4, even setting τ(ρ) = 0.999 (effectively perfect correlation)

gives a trade elasticity of 2.99. As a consequence of this lower trade elasticity, this version of the

model implies very large total gains from trade.

As shown in the last row of Table A6, with independent draws for n(s), n∗(s) the model implies

too strong an association between sector concentration and import penetration relative to the data.

B.9 5-digit sectors

For this last robustness experiment, we recalibrate our model to 5-digit rather than 7-digit data.

The second-last column of Table A6 reports the 5-digit counterparts of our usual 7-digit moments in

the Taiwanese data while the last column of Table A6 reports the model moments when calibrated

to this 5-digit data.

At this higher level of aggregation there is less concentration in sectoral shares than there is

at the 7-digit level and hence there is less measured misallocation. The productivity losses due to

markups are 6.2%, down from the 7% for our benchmark model calibrated to 7-digit data. The

total gains from trade remain about the same as in our benchmark but since there is less measured

misallocation, the pro-competitive effects are weaker, contributing 0.5% down from our benchmark
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2%. Thus, consistent with our earlier results, we see that the pro-competitive gains from trade are

smaller when product market distortions are small.

To maintain comparability with our other results, for this experiment we have kept the across-

sector elasticity fixed at θ = 1.24, which is arguably quite high for 5-digit data.2 With a lower value

for θ (e.g., with Cobb-Douglas θ = 1) measured misallocation is higher and the pro-competitive

gains from trade are correspondingly higher also.

B.10 Experiments with N competitors per sector

To further highlight the role of cross-country correlation in sectoral productivity draws, we have

solved a simplified version of our model with the following structure: a fixed number of producers

N per sector (the same in both countries), no fixed costs of operating (so all N producers operate),

and either perfectly dependent cross-country draws ρ = 1 or perfectly independent cross-country

draws, ρ = 0. We compare autarky to free trade — i.e., no net trade costs, τ = 1, and no fixed

costs of exporting fx = 0.

Panel A of Table A8 shows results for the case of no idiosyncratic productivity draws, xi(s) = 1

for all i, s. Now consider the case N = 1, so that under autarky there is a single monopolist in each

sector. In this case there is no misallocation in autarky (there is neither within-sector nor across-

sector markup dispersion). Now with free trade there are two producers in each sector (in this

sense, it is as if the country size doubles). The effects on misallocation now crucially depend on the

cross-country correlation in sectoral productivity. If sectoral productivity draws are independent

across countries, then typically one producer gains market share at the expense of the other, and,

crucially, this pattern varies across sectors depending on the particular pairs of productivity draws.

This creates markup dispersion and hence with free trade there is misallocation whereas there was

no misallocation in autarky. Thus the gains from trade will be less than if markups were constant

(i.e., aggregate productivity increases by less than first-best productivity). By contrast, if sectoral

productivity draws are perfectly correlated across countries, then the two producers (who have equal

productivity) split the market between them and this happens exactly the same way in each sector,

hence in this case trade does not lead to misallocation. Put differently, ρ = 1 perfectly mitigates

the increase in misallocation that would otherwise happen.

Notice that the extent of misallocation created when sectoral productivity draws are independent

is decreasing in N — and steeply decreasing in N at that. With independent draws and N = 1,

free trade creates productivity losses of 16.4% relative to the first-best, with N = 2 the losses are

much smaller, 0.9% and with N = 10 the losses are down to 0.02%.

Panel B of Table A8 shows the same exercise but now with idiosyncratic productivity draws, as

in the benchmark model. We again see that for low N opening to trade creates misallocation and

that this misallocation is mitigated by correlated sectoral productivity draws. By the time we get

to N = 10 (which is similar to our benchmark model, which has a median of about 10 producers

per sector per country), opening to free trade reduces misallocation if sectoral draws are correlated.

2A 5-digit sector in Taiwan best corresponds to a 4-digit sector in the US.
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C Extensions

Our benchmark model makes several stark simplifying assumptions: (i) labor is the only factor of

production and is in inelastic supply, (ii) the two countries Home and Foreign are symmetric at the

aggregate level, and (iii) there is an exogenous number of competitors per sector. Here we provide

further details on extensions of our benchmark model that relax these assumptions. Since the main

text already discusses the results from these extensions at some length, here we focus on recording

additional details that were omitted from the main text to save space.

C.1 Capital accumulation and elastic labor supply

In the benchmark model, the only source of pro-competitive gains from trade is changes in markup

dispersion. Changes in the level of the aggregate markup µ have no welfare implications. But with

capital accumulation and/or elastic labor supply, the aggregate markup µ acts like a distortionary

wedge affecting investment and labor supply decisions, and, because of this, a reduction in the

aggregate markup increases welfare beyond the increases associated with a reduction in markup

dispersion.

Setup. To illustrate this, we solve a simple dynamic extension of our benchmark model. Specif-

ically, we suppose the representative consumer has intertemporal preferences
∑∞

t=0 β
tU(Ct, Lt)

over aggregate consumption Ct and labor Lt, that capital is accumulated according to Kt+1 =

(1 − δ)Kt + It, and that individual producers have production function y = akαl1−α. We then

have a standard two-country representative consumer economy with aggregate production function

Yt = AtK
α
t L̃

1−α
t where At is aggregate productivity (TFP) as in the main text and where L̃t is

aggregate employment net of fixed costs.

Aggregate markup distortions. Using the representative consumer’s optimality conditions for

capital accumulation and labor supply and the firms’ optimal input demands gives the equilibrium

conditions

Uc,t = βUc,t+1

( 1

µt+1
α
Yt+1

Kt+1
+ 1− δ

)
, (8)

and

−
Ul,t
Uc,t

=
Wt

Pt
=

1

µt
(1− α)

Yt

L̃t
, (9)

where µt is the aggregate markup as in the main text. High aggregate markups thus act like

distortionary capital and labor income taxes and reduce output relative to its efficient level.

Parameterization. To quantify the additional welfare effects of changes in the aggregate markup,

we solve this version of the model assuming utility function U(C,L) = logC − L1+η/1 + η and

assuming discount factor β = 0.96, depreciation rate δ = 0.1 and output elasticity of capital α = 1/3.

We report results for various elasticities of labor supply η. We start the economy in autarky and then

compute the transition to a new steady-state corresponding to the Taiwan benchmark. We measure
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the welfare gains as the consumption compensating variation taking into account the dynamics of

consumption and employment during the transition to the new steady-state.

Results. The first column of Table A9 shows what happens in a standard model with constant

markups if TFP increases by 10.4%, i.e., the benchmark increase in first-best TFP. Physical capital,

output, and consumption all increase by 15.7%, i.e., by 1/(1− α) = 1.5 times the increase in TFP.

Aggregate labor does not change because utility is log in consumption so that the income and

substitution effects implied by the change in TFP exactly cancel out. The measured welfare gain is

slightly less than the long-run increase in aggregate consumption because we take the transitional

dynamics into account.

The next column shows the corresponding results in our model with variable markups but where

we hold the aggregate markup unchanged. Thus TFP increases by 12.4% because in addition to

the first-best 10.4% there are now pro-competitive gains of 2%. Aggregate labor is again constant

because of log utility and because the aggregate markup is held fixed. Thus the additional gains

here are entirely because capital accumulation magnifies the TFP gains.

The remaining columns show results when we also allow the aggregate markup to change, falling

by 2.9% from autarky to the new steady-state. We report results for various choices of the Frisch

elasticity of labor supply 1/η. If labor supply is inelastic, so the fall in the aggregate markup affects

capital accumulation alone, welfare increases by 18%. This gain is larger than the 17% we had when

only TFP changes and the additional gain of 1% is entirely due to the effect of the change in the

aggregate markup and hence this extra 1% is entirely due to pro-competitive effects, making for a

total pro-competitive gain of 3.5%. Elastic labor supply magnifies these gains yet further. With a

Frisch elasticity of 1, the pro-competitive gains rise to 3.6% (as shown in Table A9, the size of the

pro-competitive gains are not sensitive to a Frisch elasticity in the range 0.5 to 2). In short, we see

that with elastic factor supply the relative importance of the pro-competitive effects is larger than

in our benchmark model.

C.2 Asymmetric countries

Our benchmark model assumes trade between two symmetric countries. We now relax this and

consider trade between countries that differ in size and/or productivity.

Setup. Let L,L∗ denote Home and Foreign labor forces and let Ā, Ā∗ denote Home and Foreign

economy-wide productivity — that is, Home producers now have technology yi(s) = Āai(s)li(s)

and Foreign producers have y∗i (s) = Ā∗a∗i (s)l
∗
i (s). We normalize L = 1 and Ā = 1 and consider

various L∗ and Ā∗.

In our benchmark model, aggregate symmetry implied that the wage in each country was the

same so that by choosing the Home wage as numeraire we simply had W = W ∗ = 1 along with

symmetric price levels P = P ∗ and symmetric productivities A = A∗ so that the real wage in both

countries was 1/P and the aggregate (economy-wide) markup in both countries was µ = PA.
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We continue to choose the Home country wage as numeraire, W = 1, but with asymmetric

countries now have to solve for the Foreign wage W ∗ in equilibrium. Intuitively, W ∗ has to adjust to

ensure that trade between the two countries is balanced. With asymmetric countries, the equilibrium

price levels P, P ∗ and aggregate productivities A,A∗ likewise differ across countries. We then have

Home real wage 1/P and aggregate markup µ = PA and Foreign real wage W ∗/P ∗ and aggregate

markup µ∗ = P ∗A∗/W ∗.

Parameterization. We consider L∗ = 2 and L∗ = 10 times as large as Home, holding economy-

wide productivity the same in both countries, and then consider Ā∗ = 2 and Ā∗ = 10 times as great

as Home productivity, now holding the labor force the same in both countries. For each of these four

experiments, we recalibrate the model so that, for the Home country, we reproduce the degree of

openness of the Taiwan benchmark — in particular, we choose the proportional trade cost τ , export

fixed cost fx, and correlation parameter ρ so that the Home country continues to have an aggregate

import share of 0.38, fraction of exporters 0.25 and trade elasticity 4. Table A10 reports the full

set of parameters used for each experiment, Table A11 reports the target moments and their model

counterparts for both Home and Foreign countries for each experiment, and Table A12 reports the

gains from trade and statistics on markup dispersion for both Home and Foreign countries for each

experiment. In addition to our usual aggregate statistics, in Table A12 we also report the relative

real wage expressed as the real wage of Foreign to Home, that is (W ∗/P ∗)/(W/P ) = (A∗/A)/(µ∗/µ).

C.3 Free entry

We now discuss in somewhat greater detail a version of our model with free entry and an endogenous

number of competitors per sector. We assume that entry is not directed at a particular sector: after

paying a sunk entry cost, a firm learns the productivity with which it operates, as in Melitz (2003),

as well as the sector to which it is assigned. We also assume that there are no fixed costs of operating

or exporting in any given period. Instead, we assume that a firm’s productivity is drawn from a

discrete distribution which includes a mass point at zero.

Setup. The productivity of a firm in sector s ∈ [0, 1] is given by a world component, common to

both countries, z(s), and a firm-specific component. In addition, we assume a gap, u(s), between

the productivity with which a firm produces for its domestic market and that with which it produces

in its export market. Greater dispersion in u(s) reduces the amount of head-to-head competition

between Home and Foreign producers, lowers the aggregate trade elasticity, and thus has the same

role as reducing the correlation between sectoral productivity draws in our benchmark model.

Specifically, let u(s) denote the productivity gap of Home producers in sector s and u∗(s) denote

the productivity gap of Foreign producers in sector s. There is an unlimited number of potential

entrants. To enter, a firm pays a sunk cost fe that allows it to draw (i) a sector s in which to operate

and (ii) idiosyncratic productivity xi(s) ∈ {0, 1, x̄}. A Home firm in sector s with idiosyncratic

productivity xi(s) produces for its domestic market with overall productivity aHi (s) = z(s)u(s)xi(s)
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and produces for its export market with overall productivity a∗Hi (s) = z(s)xi(s)/τ where τ is the

gross trade cost. Similarly, a Foreign firm in sector s with idiosyncratic productivity x∗i (s) produces

for its domestic market with overall labor productivity a∗Fi (s) = z(s)u∗(s)x∗i (s) and produces for

its export market with overall productivity aFi (s) = z(s)x∗i (s)/τ .

Sector types. Sectors differ in the probability that any individual entrant assigned to that sector

draws a particular productivity xi(s). To simplify computations, we assume a finite number of

sector types k = 1, ...,K. A sector type is a pair Ω1(k),Ω2(k) where Ω1 denotes the probability

that an entrant is successful, i.e., that it draws xi(s) > 0, and Ω2 denotes the probability that a

successful entrant draws high productivity xi(s) = x̄. We write ν(k) for the measure of sectors of

type k with
∑

k ν(k) = 1.

The special case of a single sector type, K = 1, is of particular significance since it implies

that there is no cross-country correlation in productivities, since in this case the probability that a

successful entrant gets a high productivity draw x̄ is the same in all sectors and such draws are IID

across producers. In the more general case with heterogeneous sector types, K > 1, there is cross-

country correlation in productivities since the sector type k is the same for both countries so that

producers in a sector with high Ω2(k) have a common high probability of drawing x̄, irrespective

of which country they are located in. We think of these sectoral differences as being primarily

technological in nature and thus invariant across countries.

Timing. The timing of entry is as follows:

1. An entrant draws a sector and thus implicitly a type k ∈ {1, ...,K}. The type k determines

both the probability of any individual entrant drawing a particular productivity realization

as well as the distribution of other competitors it will face.

2. The entrant draws a random variable that determines whether it is successful (with probability

Ω1(k)) and can thus begin operating, or whether it exits (with probability 1− Ω1(k)).

3. Successful entrants then draw their productivity type. With probability Ω2(k) a successful

entrant becomes a high-productivity producer (with xi(s) = x̄), while with probability 1 −
Ω2(k) they become a low-productivity producer (with xi(s) = 1).

Now let N be the measure of producers that actually enter. Recall that we assume entrants are

uniformly distributed across sectors. Then since the total measure of sectors is 1, the number of

successful entrants who produce in a sector of type k is a binomial random variable with a success

probability Ω1(k) and N trials. For each sector s ∈ [0, 1], let k(s) denote that sector’s type and

let n(s) denote the resulting number of producers. Likewise let n1(s) and n2(s) denote the number

of low-productivity producers (xi(s) = 1) and high-productivity producers (xi(s) = x̄). Given the

realization of n(s), n2(s) is a binomial random variable with a success probability of Ω2(k(s)) and

n(s) trials. Finally, let n∗1(s) and n∗2(s) denote the number of Foreign producers of each type that

produce in sector s
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To summarize, any individual sector s is characterized by (i) the number of competitors of

each productivity type, n1(s), n2(s), n
∗
1(s), n

∗
2(s), (ii) the common productivity component of all

producers (both Home and Foreign) operating in that sector, z(s), (iii) the productivity advantage

of Home producers relative to importers in the Home market, u(s), and (iv) the productivity

advantage of Foreign producers relative to Home exporters in the Foreign market, u∗(s).

Production and pricing. The rest of the model is essentially identical to the benchmark model

in the main text. For example, the final good is a CES aggregate of sector inputs

Y =

(∫ 1

0
y(s)

θ−1
θ ds

) θ
θ−1

,

while sector output is a CES aggregate of the production of the various types of producers in each

sector, which we now write

y(s) =
(
n1(s)y

H
1 (s)

γ−1
γ + n2(s)y

H
2 (s)

γ−1
γ + n∗1(s)y

F
1 (s)

γ−1
γ + n∗2(s)y

F
2 (s)

γ−1
γ

) γ
γ−1

,

where γ is, as earlier, the elasticity of substitution within a sector and θ is the elasticity of sub-

stitution across sectors. Since there are no fixed costs of exporting or selling domestically, all n(s)

producers operate in sector s.

As in the benchmark model, the markup a firm charges is a function of the number of competitors

of each productivity it competes with. For example, in its domestic market a Home firm with

idiosyncratic productivity xi(s) in sector s has markup

µHi (s) =
εHi (s)

εHi (s)− 1
,

where

εHi (s) =

(
ωH
i (s)

1

θ
+
(
1− ωH

i (s)
) 1

γ

)−1
,

and where ωH
i (s) denotes their market share in their domestic market

ωH
i (s) =

 µHi (s)
z(s)xi(s)u(s)

p(s)

1−γ

.

Similarly, a Home firm with idiosyncratic productivity xi(s) in sector s has export market share

ω∗Hi (s) =

 µ∗Hi (s)
z(s)xi(s)

p∗(s)

1−γ

.

Given the markups, the Home price of the sector s composite satisfies

p(s)1−γ = n1(s)µ
H
1 (s)1−γ (z(s)u(s))γ−1 + n2(s)µ

H
2 (s)1−γ (z(s)u(s)x̄)γ−1

+ τ1−γn∗1(s)µ
F
1 (s)1−γz(s)γ−1 + τ1−γn∗2(s)µ

F
2 (s)1−γ (z(s)x̄)γ−1 ,
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and the Foreign price of the sector s composite satisfies

p∗(s)1−γ = τ1−γn1(s)µ
∗H
1 (s)1−γz(s)γ−1 + τ1−γn2(s)µ

∗H
2 (s)1−γ (z(s)x̄)γ−1

+ n∗1(s)µ
∗F
1 (s)1−γ (z(s)u∗(s))γ−1 + n∗2(s)µ

∗F
2 (s)1−γ (z(s)u∗(s)x̄)γ−1 .

Expected profits of a potential entrant. We now compute the expected profits of a firm that

contemplates entry. Such a firm has an equal probability of entering any one of the sectors. Recall

that sectors differ in

λ = (Ω1,Ω2, u, u
∗, z, n1, n2, n

∗
1, n
∗
2) ,

where z, u, u∗ are all independent random variables. Let F (λ) denote the distribution of producers

over λ and let π1(λ), π2(λ) denote respectively the profits of an entrant with idiosyncratic produc-

tivity x = 1 and x = x̄ in sector λ. Since a potential entrant is equally likely to enter any sector,

its expected profits are

πe =

∫
Ω1(λ)

[
(1− Ω2(λ))π1(λ1(λ)) + Ω2(λ)π2(λ2(λ))−Wfe(λ)

]
dF (λ) ,

where λ1(λ) is equal to λ except that n1 is replaced by n1 +1 and λ2(λ) is equal to λ except that n2

is replaced by n2 + 1 — i.e., a potential entrant recognizes that its entry, if successful, will change

the number of producers and thus alter the industry equilibrium by changing the price p(s) and

p∗(s) of that sector’s composite in both countries.

This expression says that the expected profits conditional on entering a sector λ are given by

Ω1(λ), the probability of successful entry into that sector, times the expected profits conditional on

entry, which in turn depend on the probability of getting the higher productivity draw, Ω2(λ). This

expression also reveals why we simplify the productivity distribution for this free-entry version of the

model: the distribution F (λ) is a high-dimensional object which we can only integrate accurately

when we use the simpler productivity distribution assumed here.

Free entry condition. Expected profits πe are implicitly a function of N , the measure of entrants

— since N characterizes the Binomial distribution of the number of producers of each type in a

given sector — as well as the trade cost τ , which determines how much the producer is making from

its export sales as well as how much competition it faces from Foreign producers. We pin down the

measure of entrants N in equilibrium by setting

πe(N, τ) = 0 ,

for any given level of the trade cost τ .

Notice here that we implicitly allow the fixed cost of entering, to vary with the sector to which a

producer is assigned. More specifically, we assume that the fixed cost is proportional to the sector’s

productivity, fe(s) = fe × z(s)θ−1 for some constant fe > 0. Sectoral profits are homogeneous of

degree 1 in z(s)θ−1 so this assumption simply implies that the fixed cost scales up with the profits

of the sector to which the entrant is assigned.
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Model with collusion: setup. We also report in text results based on a model in which all

high-productivity producers from a given country and sector are able to collude and maximize joint

profits. We assume that producers in a fraction of sectors collude, while the rest face the same

problem as that described above.

Consider the problem of the colluding Home producers selling in Home. They choose their price

to maximize joint profits

n2(s)
[
pH2 (s)yH2 (s)−WlH2 (s)

]
,

taking as given the inverse demand curve

pH2 (s) =

(
yH2 (s)

y(s)

)− 1
γ
(
y(s)

Y

)− 1
θ

P ,

and recognizing that

y(s) =
(
n1(s)y

H
1 (s)

γ−1
γ + n2(s)y

H
2 (s)

γ−1
γ + n∗1(s)y

F
1 (s)

γ−1
γ + n∗2(s)y

F
2 (s)

γ−1
γ

) γ
γ−1

.

The optimal markup is now given by

1

µH2 (s)
=
γ − 1

γ
−
(

1

θ
− 1

γ

)
n2(s)ω

H
2 (s) ,

and now reflects the overall sectoral share n2(s)ω
H
2 (s) of the colluding producers, not each individual

producer’s share in isolation.

Parameterization. We continue to set γ = 10.5 and θ = 1.24 as in our benchmark model to

allow comparability of results. We again choose the trade cost, τ , to match Taiwan’s import share

of 0.38. We assume the productivity gaps u(s), u∗(s) are IID logormal with variance σ2u and choose

the dispersion to match a trade elasticity of 4.

We consider two variants of the model, (i) with a single sector type K = 1 (and hence two

probabilities Ω1,Ω2) and (ii) with heterogeneous sector types, that, as we will see, does a better job

of matching the dispersion in concentration we see in the data. For the latter we have found that

allowing for 3 values for Ω1(k) and another 3 values for Ω2(k) works reasonably. In this case, we

have to determine these 6 values plus 8 = 32 − 1 values for the measures ν(k) of each sector type.

For both variants, we choose the entry cost fe, the productivity advantage of type 2 producers x̄,

and the distribution of Ω1(k),Ω2(k) across sectors targeting the same set of concentration moments

we targeted for the benchmark model. Finally, we choose the dispersion of sectoral productivity

z(s) to match the amount of concentration in output and employment across sectors. Specifically,

we assume a Pareto distribution of z(s) and choose the shape parameter to match the fraction of

value added (employment) accounted for by the top 1% and 5% of sectors.

Table A13 reports the full set of parameters used for each free-entry experiment, Table A14

reports the target moments and their model counterparts, and Table A15 reports the gains from

trade and statistics on markup dispersion for each free-entry experiment.
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Single sector type: results. With a single sector type, K = 1, the free-entry model implies

total gains of 6.3% of which 1.9% is due to pro-competitive effects. The free-entry model implies

less misallocation in autarky than in the benchmark model but also implies a greater reduction in

misallocation when the economy opens to trade, misallocation relative to autarky falls by just under

a half. As shown in Table A14, this version of the model is not able to reproduce the amount of

dispersion in concentration that we see in the data. As a consequence, as shown in Table A15, this

version of the model also implies very little dispersion in sectoral markups as compared to the data.

Heterogeneous sector types: results. By allowing sectoral differences in the probability of a

successful entrant drawing the high-productivity x̄, the model is more dispersion in concentration

and hence more dispersion in sectoral markups. We have found that, as shown in Table A14, with

nine sector types the model does a considerably better job of matching the facts on dispersion in

sectoral concentration. This version of the model implies total gains of 6.9% of which 1.2% is due

to pro-competitive effects. Nonetheless, this version of the model still produces too little dispersion

in sectoral markups — the key source of misallocation in the model. For example, the ratio of the

95th percentile of markups to that of the median is equal to only 1.17 in the model, much lower

than the 1.50 in the data.

To better match the dispersion in sectoral markups, we turn to the extension with collusion out-

lined above. With collusion the model produces considerably more dispersion in sectoral markups.

For example, when 25% of sectors collude, the ratio of the 95th to the median markup increases

from 1.17 to 1.31, still smaller than in the data but now considerably more than in the nine sector

model without collusion. With 25% collusion, the model implies total gains of 11.6% of which 4.3%

is due to pro-competitive effects. Thus this version of the model implies total gains about the same

as the benchmark but gives a much larger share to the pro-competitive effect. In short, we again

see that the pro-competitive gains from trade are large when product market distortions are large

to begin with.
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3"digit 314:*computers*and*storage*equipment 2"digit 4"digit 7"digit
(sector)

5"digit 31410*"*computers
textile 16 76

7"digit 3141000*"*mini"computer apparel 10 39
3141010*"*work"station leather 4 33
3141021*"*desktop*computer lumber 6 15
3141022*"*laptop*computer furniture 4 12
3141023*"*notebook*computer paper 6 23
3141024*"*palmtop*computer printing 3 4
3141025*"*pen"based*computer chemical*materials 7 152
3141026*"*hand*held*computer chemical*products 9 83
3141027*"*electronic*dictionary petroleum 2 12

rubber 3 16
plastics 7 34
clay/glass/stone 18 47
primary*metal 14 99
fabricated*metal 14 65
industrial*machinery 29 163
computer/electronics 11 136
electronic*parts 6 72
electrical*machinery 11 125
transportation 12 99
instruments 7 70

Table&A1:&Data&Description&and&Product&Classification

Panel&B:&Distribution&of&Sectors&and&IndustriesPanel&A:&An&Example&of&Product&Classification



Plant Firm Plant Firm

Within&sector,concentration,,domestic,sales Size,distribution,of,sectors,based,on,domestic,sales

mean+inverse+HH 7.25 7.02 fraction+sales+by+top+0.01+sectors 0.26 0.27
median+inverse+HH 3.92 3.85 fraction+sales+by+top+0.05+sectors 0.52 0.53
mean+top+share 0.45 0.45 fraction+wages+(same)+top+0.01+sectors 0.11 0.15
median+top+share 0.40 0.40 fraction+wages+(same)+top+0.05+sectors 0.32 0.36

Distribution,of,sectoral,shares,,domestic,sales Size,distribution,of,producers,based,on,domestic,sales

mean+share 0.04 0.04 fraction+sales+by+top+0.01+firms 0.41 0.41
median+share 0.005 0.004 fraction+sales+by+top+0.05+firms 0.65 0.65
p75+share 0.02 0.02 fraction+wages+(same)+top+0.01+producers 0.24 0.32
p95+share 0.19 0.19 fraction+wages+(same)+top+0.05+producers 0.47 0.56
p99+share 0.59 0.58
std+dev+share 0.11 0.11

Across&sector,concentration

p10+inverse+HH 1.17 1.28
p50+inverse+HH 3.73 3.85
p90+inverse+HH 13.82 14.36

p10+top+share 0.16 0.16
p50+top+share 0.41 0.40
p90+top+share 0.92 0.88

p10+number+producers 2 3
p50+number+producers 10 11
p90+number+producers 52 56

Table&A2:&Plant-Level&and&Firm-Level&Concentration



TW#SIC#2 Sector median median median median #Obs

11 Textile 0.27 0.17 0.39 0.04 0.02 0.06 0.69 0.57 0.79 1.00 0.98 1.02 5982
12 Apparel 0.26 0.11 0.43 0.03 0.00 0.06 0.68 0.56 0.80 0.97 0.92 1.03 3790
13 Leather 0.30 0.21 0.39 0.02 0.01 0.03 0.66 0.59 0.74 0.98 0.96 1.01 4585
14 Wood 0.30 0.27 0.34 0.01 0.00 0.01 0.69 0.64 0.74 1.00 0.99 1.01 4765
15 Paper 0.23 0.13 0.34 0.05 0.03 0.07 0.70 0.61 0.78 0.98 0.96 1.00 4919
16 Printing 0.35 0.24 0.46 0.05 0.03 0.07 0.62 0.52 0.73 1.03 1.01 1.05 7744
17 Petroleum 0.20 0.07 0.37 0.10 0.03 0.17 0.68 0.53 0.83 0.99 0.95 1.04 3337
18 Chemical#Material 0.30 0.21 0.41 0.08 0.04 0.13 0.63 0.55 0.70 1.02 0.98 1.06 6860
19 Chemical#Prod J0.11 J0.24 0.04 0.18 0.06 0.28 0.86 0.77 0.95 0.94 0.85 1.03 706
20 Pharmaceutical 0.33 0.22 0.43 0.04 0.01 0.06 0.64 0.53 0.75 1.00 0.98 1.03 3424
21 Rubber 0.29 0.20 0.39 0.05 0.03 0.07 0.66 0.58 0.74 1.00 0.97 1.03 23813
22 Plastic 0.23 0.09 0.37 0.05 0.04 0.07 0.73 0.59 0.87 1.01 0.98 1.04 8041
23 NonJmetallic#Mineral 0.41 0.30 0.53 0.09 0.04 0.14 0.52 0.43 0.61 1.03 0.97 1.08 7693
24 Basic#Metal 0.30 0.20 0.41 0.05 0.03 0.06 0.67 0.57 0.77 1.02 0.99 1.04 35622
25 Fabricated#Metal 0.29 0.19 0.41 0.04 0.03 0.05 0.66 0.56 0.76 1.00 0.98 1.02 52159
26 Electronic#Parts#and#Components 0.30 0.17 0.42 0.07 0.03 0.11 0.63 0.53 0.73 0.99 0.96 1.03 6772
27 Computer,#Electronic,#Optical#Prod 0.34 0.23 0.44 0.10 0.06 0.13 0.62 0.51 0.72 1.05 1.02 1.07 8723
28 Electrical#Equipment 0.25 0.10 0.42 0.06 0.03 0.09 0.69 0.55 0.83 1.00 0.97 1.04 11316
29 Machinery#and#Eqiupment 0.28 0.20 0.37 0.08 0.05 0.11 0.67 0.60 0.73 1.03 1.01 1.04 12708
30 Motor#Vehicle#and#Parts 0.38 0.27 0.48 0.03 0.01 0.06 0.57 0.47 0.67 0.97 0.90 1.06 3923
31 Transportation#Equipment#and#Parts 0.31 0.20 0.42 0.04 0.01 0.06 0.65 0.56 0.74 1.00 0.98 1.01 10288

Overall 0.30 0.19 0.41 0.05 0.03 0.07 0.66 0.56 0.75 1.01 0.98 1.03 239067

Table&A3:&Production&Function&Estimates

Panel&A:&Output&Elasticity&With&Respect&to… Panel&B:&Returns&to&Scale
Labor Capital Materials

iqr iqr iqr iqr



DLW Projected

Unconditional*markup*distribution

p75/p50 1.24 1.01
p90/p50 1.74 1.04
p95/p50 2.46 1.08
p99/p50 4.84 1.33

std:dev:log 0.38 0.06

Across3sector*markup*distribution

p75/p50 1.30 1.10
p90/p50 1.99 1.31
p95/p50 2.81 1.56
p99/p50 4.56 2.58

std:dev:log 0.41 0.20

Regression*of*DLW*inverse*markups*on*market*shares

multiAproduct

singleAproduct
[0.02]

Table&A4:&Alternative&Markup&Estimates

Panel&A:&Markup&Dispersion

Panel&B:&Inverse&Markup&Regressions

A0.69
[0.01]
A0.66



Benchmark Alternative Labor2wedges Tariffs Bertrand Low2γ High2γ No2fix2costs Gauss.2copula n(s),n*(s) 5Edigit

Main%parameters

γ within&sector,elasticity,of,substitution 10.5 10.5 10.5 10.5 10.5 5 20 10.5 10.5 10.5 10.5
θ across&sector,elasticity,of,substitution 1.24 1.24 1.24 1.24 1.24 1.20 1.25 1.24 1.24 1.24 1.24
ξ_x pareto,shape,parameter,,idiosyncratic,productivity 4.58 4.58 4.58 4.58 4.53 4.58 4.58 4.58 4.58 4.58 5.70
ξ_z pareto,shape,parameter,,sector,productivity 0.51 0.51 0.51 0.51 0.56 0.51 0.51 0.51 0.51 0.51 0.51
ζ geometric,parameter,,number,producers,per,sector 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.020
f_d fixed,cost,of,domestic,operations 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0 0.004 0.004 1e&7
f_x fixed,cost,of,export,operations 0.203 0.060 0.065 0.055 0.110 1.35 0.040 0 0.070 0.065 0.049
τ trade,cost 1.129 1.129 1.129 1.055 1.132 1.080 1.138 1.136 1.129 1.170 1.130
ρ kendall,correlation,for,sectoral,draws, 0.94 0.93 0.93 0.94 0.91 1.00 0.92 0.95 0.99 1.00 0.91

Additional%parameters%/%moments

kendall,correlation,for,idiosyncratic,draws 0 0.05 0 0 0 0 0 0 0 0 0
sensitivity,of,labor,wedge,to,productivity 0 0 0.001 0 0 0 0 0 0 0 0
mean,tariff 0 0 0 0.062 0 0 0 0 0 0 0
std,dev,tariffs 0 0 0 0.039 0 0 0 0 0 0 0

Table2A5:2Parameters2for2Robustness2Experiments



Data Autarky Benchmark Alternative Labor5wedges Tariffs Bertrand Low5γ High5γ No5fix5costs Gauss.5copula n(s),n*(s) Data Model

Within&sector,concentration,,domestic,sales

mean%inverse%HH 7.25 17.20 4.30 16.12 16.22 16.08 2.85 10.00 14.91 16.10 14.75 4.55 14.97 13.22
median%inverse%HH 3.92 5.06 3.79 3.92 4.00 3.91 2.31 7.97 2.84 3.93 3.91 3.86 7.98 5.67
mean%top%share 0.45 0.37 0.46 0.44 0.43 0.44 0.61 0.31 0.52 0.44 0.44 0.46 0.30 0.36
median%top%share 0.40 0.33 0.41 0.40 0.40 0.41 0.59 0.25 0.49 0.40 0.40 0.41 0.25 0.33

Distribution,of,sectoral,shares,,domestic,sales

mean%share 0.04 0.03 0.05 0.03 0.03 0.03 0.06 0.04 0.04 0.00 0.03 0.05 0.01 0.02
median%share 0.005 0.004 0.005 0.004 0.004 0.004 0.004 0.015 0.004 0.000 0.004 0.006 0.002 0.003
p75%share 0.02 0.01 0.03 0.01 0.01 0.01 0.03 0.04 0.01 0.00 0.01 0.03 0.01 0.01
p95%share 0.19 0.17 0.27 0.18 0.17 0.18 0.40 0.16 0.28 0.00 0.19 0.25 0.06 0.09
p99%share 0.59 0.41 0.59 0.50 0.49 0.50 0.87 0.41 0.67 0.09 0.51 0.60 0.22 0.32
std%dev%share 0.11 0.08 0.12 0.09 0.09 0.09 0.16 0.08 0.13 0.03 0.10 0.12 0.05 0.06

Across&sector,concentration

p10%inverse%HH 1.17 2.00 1.70 1.72 1.79 1.75 1.13 2.20 1.25 1.80 1.81 1.52 2.14 2.41
p50%inverse%HH 3.73 5.06 3.79 3.92 4.00 3.91 2.31 7.97 2.84 3.93 3.91 3.86 6.09 5.67
p90%inverse%HH 13.82 10.70 7.66 8.83 9.02 8.64 5.19 20.56 5.68 8.67 8.38 8.47 16.38 12.58

p10%top%share 0.16 0.18 0.24 0.21 0.20 0.21 0.32 0.12 0.27 0.21 0.22 0.22 0.14 0.17
p50%top%share 0.41 0.33 0.41 0.40 0.40 0.41 0.59 0.25 0.49 0.40 0.40 0.41 0.30 0.33
p90%top%share 0.92 0.58 0.75 0.73 0.73 0.74 0.94 0.55 0.89 0.73 0.71 0.80 0.63 0.60

p10%number%producers 2 3 3 3 3 3 3 3 2 2 3 3 5 6
p50%number%producers 10 18 16 17 17 17 13 17 10 15 16 16 36 36
p90%number%producers 52 64 47 55 56 55 36 58 27 52 48 47 138 127

Size,distribution,sectors,,domestic,sales

fraction%sales%by%top%0.01%sectors 0.26 0.21 0.21 0.21 0.19 0.21 0.15 0.12 0.26 0.21 0.17 0.20 0.24 0.19
fraction%sales%by%top%0.05%sectors 0.52 0.31 0.32 0.33 0.30 0.33 0.27 0.22 0.38 0.32 0.29 0.32 0.51 0.31
fraction%wages%(same)%top%0.01%sectors 0.11 0.22 0.22 0.22 0.12 0.23 0.15 0.13 0.27 0.22 0.16 0.19 0.11 0.19
fraction%wages%(same)%top%0.05%sectors 0.32 0.32 0.33 0.34 0.21 0.34 0.27 0.23 0.39 0.33 0.27 0.31 0.32 0.30

Size,distribution,producers,,domestic,sales

fraction%sales%by%top%0.01%producers 0.41 0.36 0.33 0.40 0.37 0.40 0.33 0.19 0.43 0.84 0.38 0.32 0.41 0.42
fraction%sales%by%top%0.05%producers 0.65 0.66 0.61 0.72 0.70 0.73 0.70 0.42 0.75 1.00 0.70 0.60 0.65 0.73
fraction%wages%top%0.01%producers 0.24 0.32 0.31 0.36 0.26 0.37 0.31 0.17 0.41 0.81 0.33 0.29 0.24 0.38
fraction%wages%top%0.05%producers 0.47 0.61 0.57 0.68 0.62 0.69 0.67 0.39 0.71 1.00 0.65 0.55 0.47 0.69

Import,dispersion,statistics

coefficient,%share%imports%on%share%sales 0.81 FF 0.55 0.65 0.54 0.59 0.51 1.13 0.37 0.56 1.12 0.63 0.81 0.44
index%import%share%dispersion 0.38 FF 0.26 0.24 0.25 0.24 0.44 0.08 0.38 0.23 0.15 0.43 0.28 0.34
index%intraindustry%trade 0.37 FF 0.45 0.49 0.47 0.48 0.31 0.74 0.33 0.48 0.63 0.33 0.41 0.40

coefficient,%import%penetration%on%domestic%HH 0.21 FF 0.14 0.23 0.22 0.21 F0.18 0.14 0.45 0.12 0.11 0.66 0.32 0.28

5Hdigit

Table5A6:5Moments5implied5by5Robustness5Experiments



Data Benchmark Alternative Labor3wedges Tariffs Bertrand Low3γ High3γ No3fix3costs Gauss.3copula n(s),n*(s) 5Fdigit

TFP$loss$autarky,$% 00 9.0 9.1 8.8 9.0 4.6 4.9 11.3 8.9 9.8 10.4 6.8
TFP$loss$Taiwan,$% 00 7.0 6.7 6.8 6.9 2.1 2.3 9.9 6.9 7.2 7.8 6.2
gains$from$trade,$% 00 12.4 12.0 12.2 14.6 13.8 16.6 11.8 11.8 11.6 26.6 12.3
pro0competitive$gains,$% 00 2.0 2.4 2.0 2.0 2.5 2.7 1.4 2.0 2.6 2.6 0.5

trade$elasticity 4.00 4.00 4.00 4.00 4.00 4.00 3.59 4.00 4.00 4.00 2.99 4.00
import$share 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
fraction$exporters 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.00 0.25 0.25 0.25

average/aggregate$labor$share 1.35 1.16 1.17 1.35 1.17 1.09 1.07 1.23 1.19 1.20 1.16 1.14

aggregate$markup 00 1.31 1.31 1.30 1.34 1.21 1.37 1.32 1.31 1.34 1.31 1.27

Unconditional*markup*distribution

p75/p50 1.01 1.02 1.01 1.01 1.03 1.00 1.02 1.00 1.00 1.01 1.02 1.00
p90/p50 1.03 1.09 1.05 1.05 1.11 1.01 1.05 1.09 1.00 1.06 1.08 1.02
p95/p50 1.06 1.18 1.12 1.12 1.17 1.04 1.10 1.20 1.00 1.13 1.15 1.06
p99/p50 1.27 1.51 1.39 1.38 1.44 1.21 1.28 1.57 1.03 1.42 1.45 1.22

Across3sector*markup*distribution

p75/p50 1.10 1.08 1.08 1.08 1.09 1.06 1.06 1.09 1.08 1.08 1.07 1.05
p90/p50 1.27 1.24 1.23 1.23 1.23 1.18 1.18 1.28 1.24 1.23 1.19 1.16
p95/p50 1.50 1.42 1.43 1.43 1.44 1.31 1.53 1.38 1.43 1.42 1.31 1.27
p99/p50 2.34 1.71 1.67 1.68 1.73 1.78 1.60 1.88 1.71 1.58 1.61 1.54

Table3A7:3Gains3from3Trade3and3Markup3Distributions3implied3by3Robustness3Experiments



Autarky ρ  = 1  ρ = 0 Autarky ρ  = 1  ρ = 0

N=1 N=2
TFP$loss,$% 0 0 16.4 TFP$loss,$% 0 0 0.9

import$share 0 0.5 0.5 import$share 0 0.5 0.5

fraction$exporters 0 1 1 fraction$exporters 0 1 1

trade$elasticity ?? 1.32 0.57 trade$elasticity ?? 2.85 0.63

aggregate$markup 5.25 1.83 3.48 aggregate$markup 1.83 1.38 1.76

domestic$markup 5.25 1.83 3.48 domestic$markup 1.83 1.38 1.76

import$markup ?? 1.83 3.48 import$markup ?? 1.38 1.76

Markup'dispersion Markup'dispersion
unconditional 0 0 0.59 unconditional 0 0 0.22

sectoral 0 0 0 sectoral 0 0 0

N=10 N=20
TFP$loss,$% 0 0 0.02 TFP$loss,$% 0 0 0.004

import$share 0 0.5 0.5 import$share 0 0.5 0.5

fraction$exporters 0 1 1 fraction$exporters 0 1 1

trade$elasticity ?? 6.83 0.71 trade$elasticity ?? 7.97 0.66

aggregate$markup 1.20 1.15 1.20 aggregate$markup 1.15 1.13 1.15

domestic$markup 1.20 1.15 1.20 domestic$markup 1.15 1.13 1.15

import$markup ?? 1.15 1.20 import$markup ?? 1.13 1.15

Markup'dispersion Markup'dispersion
unconditional 0 0 0.04 unconditional 0 0 0.02

sectoral 0 0 0 sectoral 0 0 0

Autarky ρ  = 1  ρ = 0 Autarky ρ  = 1  ρ = 0

N=1 N=2
TFP$loss,$% 0 4.6 15.9 TFP$loss,$% 4.25 6.73 6.01

import$share 0 0.5 0.5 import$share 0 0.5 0.5

fraction$exporters 0 1 1 fraction$exporters 0 1 1

trade$elasticity ?? 1.29 0.55 trade$elasticity ?? 2.60 0.63

aggregate$markup 5.25 1.88 3.55 aggregate$markup 1.87 1.47 1.81

domestic$markup 5.25 1.88 3.55 domestic$markup 1.87 1.47 1.81

import$markup ?? 1.88 3.55 import$markup ?? 1.47 1.81

Markup'dispersion Markup'dispersion
unconditional 0 0.14 0.59 unconditional 0.13 0.14 0.24

sectoral 0 0 0 sectoral 0.06 0.09 0.12

N=10 N=20
TFP$loss,$% 8.0 7.8 8.3 TFP$loss,$% 7.4 7.1 10.5

import$share 0 0.5 0.5 import$share 0 0.5 0.5

fraction$exporters 0 1 1 fraction$exporters 0 1 1

trade$elasticity ?? 4.33 0.65 trade$elasticity ?? 4.67 0.65

aggregate$markup 1.33 1.31 1.34 aggregate$markup 1.30 1.28 1.35

domestic$markup 1.33 1.31 1.34 domestic$markup 1.30 1.28 1.35

import$markup ?? 1.31 1.34 import$markup ?? 1.28 1.35

Markup'dispersion Markup'dispersion
unconditional 0.11 0.08 0.09 unconditional 0.08 0.06 0.06

sectoral 0.11 0.11 0.11 sectoral 0.12 0.12 0.12

Notes:

N$is$number$of$producers$per$sector$per$country

No$fixed$cost$of$operating,$f_d$=$0

Free$trade$means τ =$1$(no$net$trade$cost)$and$f_x$=$0
Markup$dispersion$is$measured$as$std$dev$of$log$markups

Free/trade Free/trade

Table/A8:/Fixed/N/Experiments

Panel/A:/No/Idiosyncratic/Productivity/Draws

Panel/B:/With/Idiosyncratic/Productivity/Draws

Free/trade Free/trade



Aggregate
Standard*model markup*constant 0 0.5 1 2 Inf

change'TFP,'% 10.4 12.4 12.4 12.4 12.4 12.4 12.4
change'markup,'% 0 0 72.9 72.9 72.9 72.9 72.9

change'C,'% 15.7 18.6 19.5 20.7 21.3 21.8 23.0
change'K,'% 15.7 18.6 23.0 24.2 24.8 25.4 26.6
change'Y,'% 15.7 18.6 20.1 21.3 21.9 22.5 23.7
change'L,'% 0 0 0 1.2 1.8 2.4 3.6

change'welfare,'% 14.5 17.0 18.0 18.1 18.1 18.2 18.4
(including'transition)

pro7competitive'gains,'% 0 2.4 3.5 3.6 3.6 3.7 3.9

Other'parameters:
α output'elasticity'of'capital 0.33
β time'discount'factor 0.96
δ capital'depreciation'rate 0.1

Frisch*elasticity*of*labor*supply*(1/η)

Variable*markups

Table*A9:*Gains*from*Trade*with*Capital*Accumulation*and*Elastic*Labor*Supply



Benchmark L*=2L L*=10L Abar*=2Abar Abar*=10Abar

γ within&sector,elasticity,of,substitution 10.5 10.5 10.5 10.3 10.3
θ across&sector,elasticity,of,substitution 1.24 1.24 1.24 1.23 1.23
ξ_x pareto,shape,parameter,,idiosyncratic,productivity 4.58 4.58 4.58 4.58 4.58
ξ_z pareto,shape,parameter,,sector,productivity 0.51 0.51 0.51 0.51 0.51
ζ geometric,parameter,,number,producers,per,sector 0.043 0.043 0.043 0.043 0.043
f_d fixed,cost,of,domestic,operations 0.004 0.004 0.004 0.004 0.004
f_x fixed,cost,of,export,operations 0.203 0.203 0.203 0.250 0.300
τ trade,cost 1.129 1.245 1.500 1.132 2.660
ρ kendall,correlation 0.94 0.94 0.96 0.86 0.60

Table4A10:4Parameters4for4Asymmetric4Countries4Experiments

Larger4trading4partner More4productive4trading4partner



Data Home( Foreign Home( Foreign Home( Foreign Home( Foreign Home( Foreign

Within&sector,concentration,,domestic,sales

mean%inverse%HH 7.25 4.30 4.30 4.29 16.63 4.28 17.08 4.36 16.70 4.46 17.14
median%inverse%HH 3.92 3.79 3.79 3.79 4.48 3.77 4.93 3.81 4.52 3.86 4.93
mean%top%share 0.45 0.46 0.46 0.46 0.40 0.46 0.37 0.46 0.40 0.47 0.38
median%top%share 0.40 0.41 0.41 0.41 0.37 0.41 0.34 0.41 0.36 0.40 0.34

Distribution,of,sectoral,shares,,domestic,sales

mean%share 0.04 0.05 0.05 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03
median%share 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.006 0.004 0.007 0.004
p75%share 0.02 0.03 0.03 0.03 0.01 0.03 0.01 0.03 0.01 0.04 0.01
p95%share 0.19 0.27 0.27 0.27 0.17 0.27 0.16 0.27 0.16 0.28 0.16
p99%share 0.59 0.59 0.59 0.59 0.45 0.58 0.41 0.61 0.45 0.65 0.42
std%dev%share 0.11 0.12 0.12 0.12 0.09 0.11 0.08 0.12 0.09 0.13 0.08

Across&sector,concentration

p10%inverse%HH 1.17 1.70 1.70 1.71 1.98 1.71 2.00 1.57 1.92 1.18 1.98
p50%inverse%HH 3.73 3.79 3.79 3.79 4.51 3.77 4.95 3.81 4.56 3.86 4.95
p90%inverse%HH 13.82 7.66 7.66 7.61 9.77 7.55 10.57 7.93 10.29 8.38 10.86

p10%top%share 0.16 0.24 0.24 0.24 0.19 0.24 0.18 0.23 0.19 0.22 0.18
p50%top%share 0.41 0.41 0.41 0.41 0.37 0.41 0.34 0.41 0.36 0.40 0.34
p90%top%share 0.92 0.75 0.75 0.75 0.65 0.74 0.59 0.79 0.68 0.92 0.63

p10%number%producers 2 3 3 3 3 3 3 3 3 2 3
p50%number%producers 10 16 16 16 18 16 18 15 17 13 18
p90%number%producers 52 47 47 48 64 48 68 46 64 46 66

Size,distribution,sectors,,domestic,sales

fraction%sales%by%top%0.01%sectors 0.26 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20
fraction%sales%by%top%0.05%sectors 0.52 0.32 0.32 0.32 0.32 0.32 0.31 0.33 0.32 0.34 0.31
fraction%wages%(same)%top%0.01%sectors 0.11 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22
fraction%wages%(same)%top%0.05%sectors 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.33 0.35 0.32

Size,distribution,producers,,domestic,sales

fraction%sales%by%top%0.01%producers 0.41 0.33 0.33 0.33 0.38 0.33 0.36 0.33 0.37 0.31 0.36
fraction%sales%by%top%0.05%producers 0.65 0.61 0.61 0.62 0.69 0.62 0.67 0.61 0.69 0.58 0.67
fraction%wages%top%0.01%producers 0.24 0.31 0.31 0.31 0.35 0.31 0.33 0.30 0.34 0.28 0.32
fraction%wages%top%0.05%producers 0.47 0.57 0.57 0.57 0.65 0.57 0.63 0.56 0.65 0.53 0.62

Import,dispersion,statistics

coefficient,%share%imports%on%share%sales 0.81 0.55 0.55 0.56 0.66 0.59 0.34 0.43 0.52 0.26 F0.03
index%import%share%dispersion 0.38 0.26 0.26 0.24 0.22 0.22 0.19 0.42 0.39 0.68 0.75
index%intraindustry%trade 0.37 0.45 0.45 0.40 0.40 0.22 0.22 0.26 0.26 0.01 0.01

Larger(trading(partner More(productive(trading(partner

Table(A11:(Moments(implied(by(Asymmetric(Countries(Experiments

Benchmark L*=2L L*=10L Abar*=2Abar Abar*=10Abar



Home% Foreign Home% Foreign Home% Foreign Home% Foreign Home% Foreign

TFP$loss$autarky,$% 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
TFP$loss,$% 7.0 7.0 7.3 6.8 7.1 7.5 7.4 7.0 7.5 8.6
gains$from$trade,$% 12.4 12.4 12.0 6.5 12.0 2.2 15.3 8.1 31.9 5.6
proCcompetitive$gains,$% 2.0 2.0 1.7 2.1 1.9 1.4 1.5 1.8 1.5 0.4

trade$elasticity 4.00 4.00 4.00 4.19 4.00 4.30 4.00 3.12 4.00 1.30
import$share 0.38 0.38 0.38 0.21 0.38 0.05 0.38 0.21 0.38 0.07
fraction$exporters 0.25 0.25 0.25 0.11 0.25 0.05 0.25 0.10 0.25 0.03

relative$real$wage 1 1 1 0.94 1 0.89 1 1.85 1 7.66
average/aggregate$labor$share 1.16 1.16 1.16 1.17 1.16 1.18 1.16 1.18 1.17 1.19
aggregate$markup 1.31 1.31 1.31 1.32 1.31 1.33 1.32 1.33 1.34 1.35

Unconditional*markup*distribution

p75/p50 1.02 1.02 1.02 1.01 1.02 1.01 1.02 1.01 1.01 1.01
p90/p50 1.09 1.09 1.09 1.05 1.09 1.05 1.09 1.05 1.06 1.06
p95/p50 1.18 1.18 1.18 1.13 1.18 1.14 1.18 1.13 1.14 1.14
p99/p50 1.51 1.51 1.51 1.42 1.51 1.44 1.51 1.42 1.43 1.45

Across3sector*markup*distribution

p75/p50 1.08 1.08 1.08 1.09 1.09 1.10 1.18 1.11 2.14 1.10
p90/p50 1.24 1.24 1.25 1.24 1.27 1.29 1.45 1.24 3.45 1.26
p95/p50 1.42 1.42 1.41 1.47 1.38 1.62 1.56 1.36 3.79 1.45
p99/p50 1.71 1.71 1.69 1.76 1.71 2.07 2.02 1.84 5.07 4.12

Table%A12:%Gains%from%Trade%and%Markup%Distributions%implied%by%Asymmetric%Countries%Experiments

Larger%trading%partner More%productive%trading%partner
Benchmark L*=2L L*=10L Abar*=2Abar Abar*=10Abar



A:#One#type#of#sector

Free#entry Free#entry
15% 25% 35% 50%

Common%to%all%free,entry%experiments

γ within&sector,elasticity,of,substitution 10.50 10.50 10.50 10.50 10.50 10.50
θ across&sector,elasticity,of,substitution 1.24 1.24 1.24 1.24 1.24 1.24

Calibrated

xbar high,productivity,draw 1.915 1.915 1.748 1.718 1.638 1.487
f_e entry,cost 0.235 0.242 0.197 0.189 0.183 0.255
σ_u std,dev,of,log,productivity,gap,,domestic,vs.,export 0.147 0.175 0.171 0.174 0.135 0.196
τ trade,cost 1.134 1.131 1.127 1.136 1.126 1.133

Ω_1(1) probability,of,successful,entry 0.097 0.047 0.109 0.158 0.078 0.122
Ω_1(2) && 0.041 0.013 0.012 0.015 0.028
Ω_1(3) && 0.293 0.301 0.313 0.281 0.339

Ω_2(1) probability,of,high&productivity,draw,given,success 0.173 0.180 0.064 0.154 0.198 0.327
Ω_2(2) && 0.441 0.098 0.059 0.212 0.126
Ω_2(3) && 0.421 0.052 0.260 0.170 0.203

ν(1) fraction,of,sectors,of,type,(Omega1,Omega2) 1 0.138 0.192 0.097 0.123 0.108
ν(2) && 0.111 0.119 0.062 0.112 0.188
ν(3) && 0.146 0.043 0.087 0.086 0.036
ν(4) && 0.154 0.101 0.118 0.134 0.051
ν(5) && 0.205 0.087 0.131 0.099 0.067
ν(6) && 0.029 0.103 0.140 0.099 0.173
ν(7) && 0.096 0.116 0.087 0.111 0.203
ν(8) && 0.060 0.141 0.148 0.145 0.165
ν(9) && 0.061 0.100 0.130 0.091 0.009

Free#entry#with#collusion

B:#Nine#types#of#sectors

Table#A13:#Parameters#for#Free#Entry#Experiments



A:#One#type#of#sector

No#entry Free#entry Free#entry
Data (benchmark) 15% 25% 35% 50%

Within&sector,concentration,,domestic,sales

mean%inverse%HH 7.25 4.30 4.38 6.22 6.10 7.71 7.10 7.63
median%inverse%HH 3.92 3.79 3.69 4.08 4.00 5.51 4.62 5.47
mean%top%share 0.45 0.46 0.33 0.31 0.37 0.31 0.31 0.30
median%top%share 0.40 0.41 0.30 0.25 0.33 0.25 0.25 0.25

Distribution,of,sectoral,shares,,domestic,sales

mean%share 0.04 0.05 0.06 0.06 0.06 0.04 0.05 0.07
median%share 0.005 0.005 0.006 0.001 0.014 0.007 0.009 0.021
p75%share 0.02 0.03 0.02 0.05 0.04 0.02 0.05 0.07
p95%share 0.19 0.27 0.31 0.25 0.31 0.19 0.25 0.26
p99%share 0.59 0.59 0.47 0.49 0.52 0.50 0.50 0.50
std%dev%share 0.11 0.12 0.11 0.11 0.12 0.09 0.10 0.10

Across&sector,concentration

p10%inverse%HH 1.17 1.70 2.28 2.03 2.00 1.97 2.00 2.07
p50%inverse%HH 3.73 3.79 3.69 4.08 4.00 5.51 4.62 5.47
p90%inverse%HH 13.82 7.66 6.29 13.29 14.76 16.60 14.83 15.74

p10%top%share 0.16 0.24 0.16 0.08 0.07 0.07 0.08 0.09
p50%top%share 0.41 0.41 0.30 0.25 0.33 0.25 0.25 0.25
p90%top%share 0.92 0.75 0.57 0.66 0.67 0.69 0.64 0.57

p10%number%producers 2 3 13 5 2 2 3 3
p50%number%producers 10 16 18 9 15 27 13 12
p90%number%producers 52 47 23 51 44 54 51 39

Size,distribution,sectors,,domestic,sales

fraction%sales%by%top%0.01%sectors 0.26 0.21 0.19 0.19 0.19 0.19 0.19 0.19
fraction%sales%by%top%0.05%sectors 0.52 0.32 0.38 0.38 0.38 0.38 0.38 0.38
fraction%wages%(same)%top%0.01%sectors 0.11 0.22 0.19 0.19 0.19 0.20 0.19 0.19
fraction%wages%(same)%top%0.05%sectors 0.32 0.33 0.38 0.38 0.38 0.38 0.38 0.38

Size,distribution,producers,,domestic,sales

fraction%sales%by%top%0.01%producers 0.41 0.33 0.35 0.34 0.33 0.36 0.33 0.28
fraction%sales%by%top%0.05%producers 0.65 0.61 0.62 0.60 0.59 0.63 0.59 0.52
fraction%wages%top%0.01%producers 0.24 0.31 0.34 0.33 0.31 0.34 0.31 0.27
fraction%wages%top%0.05%producers 0.47 0.57 0.60 0.58 0.56 0.61 0.56 0.49

Free#entry#with#collusion

B:#Nine#types#of#sectors

Table#A14:#Moments#implied#by#Free#Entry#Experiments



A:#One#type#of#sector

Free#entry Free#entry
Data 15% 25% 35% 50%

TFP$loss$autarky,$% 3.6 3.4 9.1 9.0 10.2 7.8
TFP$loss$Taiwan,$% 1.9 2.2 4.9 4.6 5.1 5.0

gains$from$trade,$% 6.3 6.9 12.5 11.6 8.1 9.6
proDcompetitive$gains,$% 1.7 1.2 4.2 4.3 5.2 2.8

measure$of$entrants$N,$autarky 191 187 136 162 176 114
measure$of$entrants$N,$Taiwan 176 168 140 160 171 110

Across&sector)markup)distribution

p75/p50 1.10 1.03 1.08 1.05 1.09 1.06 1.06
p90/p50 1.27 1.05 1.14 1.17 1.22 1.14 1.14
p95/p50 1.50 1.07 1.17 1.26 1.31 1.20 1.19
p99/p50 2.34 1.09 1.23 1.48 1.56 1.36 1.35

Free#entry#with#collusion

B:#Nine#types#of#sectors

Table#A15:#Gains#from#Trade#and#Markup#Distributions#implied#by#Free#Entry#Experiments
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