
Online Appendix:

The Power of Communication

By David Rahman

I. Infrequent Coordination

According to Sannikov and Skrzypacz (2007), collusion breaks down in public Nash

equilibrium. Here, though, firms collude in public communication equilibrium as long

as equation (5) in the paper holds. If it fails, this agreement falls apart for the same

reason as in Sannikov and Skrzypacz’s result: obedient firms cannot be identified,

so discouraging overproduction requires punishing everyone whenever prices are low.

By Lemma 1 of the paper, this punishment cost is of order r
√

∆t, but the benefit,

in terms of current collusion, is of order r∆t. As ∆t → 0, the costs overwhelm any

benefits. Nevertheless, firms can still collude in private communication equilibrium

even if (5) fails, as I show next. Intuitively, firms coordinate infrequently: they

agree that it takes more than one low price to trigger punishment, thus tempering

punishment costs. Just which low prices trigger punishment is temporarily kept secret

from firms to recycle incentives.

For simplicity, P (q) = q−e with 0 < e < 1 and firms face a constant marginal cost

of γ > 0,1 although the equilibrium construction clearly extends beyond this case. I

also simplify the previous process to a random walk: firms observe the stock of prices,

p̂t, whose innovations ∆p̂t = p̂t − p̂t−∆t equal σ
√

∆t (resp. −σ
√

∆t) with probability

Π(qt) = 1
2
[1 + (P (qt)/σ)

√
∆t] (resp. 1−Π(qt)). This change is innocuous, since both

processes tolerate the equilibrium below, but helps to distill the argument.2

Fix a block of calendar time c > 0. In every period of this block, the mediator fulfills

two functions. As before, he secretly recommends an output profile to each firm, IID

across periods, to be publicly revealed at the end of the block. He also constructs a

latent score Si = {Sit} for each firm i. Si follows a random walk whose drift depends

on both realized prices and his secret recommendations. At the end of the block, if

1I only introduce these marginal costs so that the static Cournot outcome is easily well defined.
2The process above is a random walk representation of—hence converges as ∆t → 0 to—the

previous model’s process for the stock of prices. This limit process is a Brownian motion with law

dp̂t = P (q1t + q2t)dt + σdZt, where Z stands for Wiener process. Moreover, being binomial, the

random walk above withstands Fudenberg and Levine’s (2007; 2009) hemi-continuity concerns.
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Sic exceeds a given threshold zc (linear in c) then firm i is punished by losing a given

amount of continuation value w; otherwise its continuation value remains the same.

The score is constructed so that its drift equals zero in equilibrium, but any deviation

raises the drift. This way, firms learn nothing about their score while they follow the

mediator’s recommendations, so they are never confident of eluding punishment. By

construction, every deviation raises the probability of such punishment significantly

relative to any deviation gains. As a result, the threat of punishment always looms—

so much so that it discourages firms from deviating altogether.

A. Overview of the Literature on Block Strategies

Block strategies of some sort or another have been pointed out in the literature, but

all previous attempts to sustain collusion in this way fail under either public moni-

toring, frequent actions or both. Radner (1985, 1986) introduced “review strategies,”

which punish players for statistical deviations from prescribed behavior. However,

since players play pure—hence public—strategies, they remain subject to the ba-

sic problems of value-burning. This is epitomized in Radner, Myerson and Maskin

(1986), which offers a classic example of a game with unsurmountable inefficiency

because of value-burning and despite access to review strategies.

Abreu, Milgrom and Pearce (1991) assume that public signals (such as prices) arrive in

blocks of fixed length of time, rather than every period, and exogenously manipulated

the block length T . They constructed equilibria that economized on punishment as

follows. When the signal arrives every period, public equilibria punish every time

the public signal is “bad news.” With delay and lumping of the signals, it is possible

to avoid punishing every such time and only punish sometimes. Indeed, Abreu,

Milgrom and Pearce (1991) construct equilibria where players are punished only after

T “bad news” signals. As Levin (2003, p. 847) suggested, Fuchs (2007) applied their

construction to relational contracting. This approach suffers from two basic problems.

First, it breaks down if public signals are not delayed: once a firm knows of at least

one “good news” signal the fear of punishment disappears. Second, it is too lenient:

incentives break down with frequent actions and imperfect monitoring (for instance,

Brownian motion), even with arbitrary delay of exogenous information. See Rahman

(2013b) for details.

Kandori and Matsushima (1998, motivated by Matsushima, 1995) and Compte (1998)

overcame some of these problems by considering games with private monitoring and

2



conditionally independent signals. They replaced exogenous information delay with

endogenous delay of other players’ reported signals, on which continuation values were

allowed to depend. Players monitored and scored others directly through their signals

over blocks of time. Relying on conditional independence, the same signal latency

is possible as with exogenous delay. This restores collusion as in Abreu, Milgrom

and Pearce (1991). Of course, though, the approach breaks down completely with

public monitoring, which suggests that public monitoring can be a greater challenge

to collusion than private monitoring. Additionally, Kandori and Matsushima (1998)

considered a less lenient punishment trigger, but still lenient enough to temper value-

burning. However, this trigger offers limited success at best with frequent actions,

rendering full collusion generally unattainable. Again, see Rahman (2013b) for details.

Obara (2009) and Obara and Rahman (2006) extend Compte (1998) to allow for cor-

related signals, but fail with frequent actions. Fong et al. (2011) build on the work

of Matsushima (2004) and Ely, Hörner and Olszewski (2005) in a two-player Pris-

oners’ Dilemma with private monitoring, no communication, and a small amount of

correlation amongst players’ signals. There are several basic problems with their con-

struction which mine overcomes. First, they require “sufficiently private monitoring,”

which completely eliminates the more challenging case of public signals. Secondly,

their construction breaks down with frequent actions, even under private monitoring,

since it relies on sufficiently accurate hypothesis testing and this fails with imperfect

monitoring in the limit. Lastly, their construction is implicit and does not apply to

general games.

Below, I overcome all these challenges by deriving scoring rules and thresholds that

obtain virtually full collusion in the frequent actions limit regardless of whether signals

are public or private, and using other players’ recommendations to make these scores

latent. Since recommendations are independent of actual behavior, their purpose is

precisely to encrypt a player’s score.

B. Construction and Incentive Properties of Latent Scores

Usually, firms are asked to produce the collusive duopoly output, qd = 1
2
qm, but are

occasionally asked to underproduce, qu, and overproduce, qo, for some given output

levels qu and qo such that 0 < qu < qd < qo. Every period, the mediator recommends

an output profile (q1, q2) ∈ {qu, qd, qo} × {qu, qd, qo} with probability µ12 > 0, where

µdd is close to 1. The rest of µ is chosen such that µ is symmetric (µ12 = µ21) and—to
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establish Lemma 1 below—so that, given q1 ∈ {qu, qd, qo},

(µ1u + µ1o)(q1 + qd)
−(1+e) = µ1u(q1 + qu)

−(1+e) + µ1o(q1 + qo)
−(1+e).3 (1)

To construct firm i’s latent score, start with Si0 = 0. For all t ∈ ∆t · {1, . . . , bc/∆tc},
let Sit = Sit−∆t ±

√
∆t with probability 1

2
if ∆p̂t < 0 and 1

2
± ζi(q1t, q2t) if ∆p̂t > 0,

where (q1t, q2t) is the mediator’s recommendation profile at time t,

ζ1(q1, q2) =
1
2
α1(q1)

Π(q1 + q2)
if q2 6= qd, ζ1(q1, qd) = −

1
2
α1(q1)

Π(q1 + qd)

µ1u + µ1o

µ1d

,

ζ2 is defined symmetrically to ζ1 and αi(qi) > 0 is a constant such that 1
2
±ζi(q1, q2) is

a probability for all ∆t > 0 sufficiently small. Intuitively, ζ determines stochastically

when price increases raise or lower a firm’s score. It tends to raise a firm’s score if

the other firm was asked to under- or over-produce, and otherwise tends to lower it.

Lemma 1. In equilibrium, every firm i has a driftless score Si, even conditional on

i’s information. If i ever deviates then Si has a positive drift for all small ∆t > 0.

Proof. Without loss, focus on firm 1. By construction, S1t has no drift if p̂t drops.

Otherwise, if firm 1 deviates from q1 by h and p̂t rises, S1t increases with probability

Pr(∆Sit > 0|q1, h,∆p̂t > 0) = 1
2

+

∑
q2
ζ1(q1, q2)µ12Π(q1 + q2 + h)∑

q2
µ12Π(q1 + q2 + h)

.

In equilibrium, h = 0. Substituting for ζ1, it follows that the numerator above equals
1
2
α1(q1)[µ1u−(µ1u+µ1o)+µ1u] = 0. That is, S1 has no drift given firm 1’s information,

hence unconditionally, too. If h 6= 0 then, after rearrangement, the numerator equals

1
2
α1(q1)

[
µ1u

Π(q1 + qu + h)

Π(q1 + qu)
− (µ1u + µ1o)

Π(q1 + qd + h)

Π(q1 + qd)
+ µ1o

Π(q1 + qo + h)

Π(q1 + qo)

]
.

A first-order Taylor series expansion around
√

∆t = 0 yields 1
4
µ1z(h|q1)

√
∆t, where

z(h|q1) = 2α1(q1)
σµ1

[µ1u∆P (h|q1 + qu) − (µ1u + µ1o)∆P (h|q1 + qd) + µ1o∆P (h|q1 + qo)],

∆P (h|q) = P (q + h)− P (q) and µ1 =
∑

q2
µ12 is the marginal probability of q1.

I will now use (1) to show that z(h|q1) > 0 if h 6= 0, therefore Si has positive drift.

Let f(h) = µ1u∆P (h|q1 + qu)− (µ1u + µ1o)∆P (h|q1 + qd) + µ1o∆P (h|q1 + qo). Since

clearly f(0) = 0 and f is differentiable, I will equivalently show that f ′(h) > 0 if

h > 0, f ′(h) < 0 if h < 0, and f ′(0) = 0. Let ρ = 1 + e > 0. Substituting for P (q),

f ′(h) = −e[µ1u(q1 + qu + h)−ρ − (µ1u + µ1o)(q1 + qd + h)−ρ + µ1o(q1 + qo + h)−ρ].

3It is easy to see that these 3 linear equations (one for each q1) in µ have infinitely many solutions:

by symmetry, probabilities adding up to one and µdd being given, there are 4 unknowns.
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Define q̃1(h) to satisfy

q̃1(h|ρ) = [γu(q1 + qu + h)−ρ + γo(q1 + qo + h)−ρ]−1/ρ,

where γu = µ1u/(µ1u + µ1o) and γo = 1− γu.

Claim 1. dq̃1/dh > 1.

Proof of Claim 1. Let q1uh = q1+qu+h and q1oh = q1+qo+h. By routine calculations,

dq̃1

dh
=
γuq

−ρ−1
1uh + γoq

−ρ−1
1oh

q̃1(h|ρ)−ρ−1
=

[
q̃1(h|ρ+ 1)

q̃1(h|ρ)

]−ρ−1

,

so dq̃1/dh > 1 if and only if q̃1(h|ρ+ 1) < q̃1(h|ρ). Moreover,

dq̃1

dρ
=

d

dρ
exp

{
−1

ρ
ln(γuq

−ρ
1uh + γoq

−ρ
1oh)

}
= q̃1(h|ρ)

[
1

ρ2
ln(γuq

−ρ
1uh + γoq

−ρ
1oh) +

1

ρ

γuq
−ρ
1uh ln q1uh + γoq

−ρ
1oh ln q1oh

γuq
−ρ
1uh + γoq

−ρ
1oh

]
= q̃1(h|ρ)ρ+1 1

ρ2

[
(γuq

−ρ
1uh + γoq

−ρ
1oh) ln(γuq

−ρ
1uh + γoq

−ρ
1oh)

− γuq
−ρ
1uh ln q−ρ1uh − γoq

−ρ
1oh ln q−ρ1oh

]
< 0,

where the last inequality follows because x lnx is clearly a convex function of x. Since

this is true for every ρ, it follows that q̃1(h|ρ+ 1) < q̃1(h|ρ), hence dq̃1/dh > 1. �

By construction, (1) implies that f ′(0) = 0. Therefore, since, by Claim 1, h > 0

implies that q1 + qd + h < q̃1(h|ρ), hence (q1 + qd + h)−ρ > q̃1(h|ρ)−ρ, it follows that

f ′(h) > 0. On the other hand, if h < 0 then, again by Claim 1, q1 + qd + h > q̃1(h|ρ),

so (q1 + qd + h)−ρ < q̃1(h|ρ)−ρ and f ′(h) < 0. This finally establishes Lemma 1. �

In the proof of Lemma 1, z(h|q1) was defined to be the drift of Si given i’s information,

since Pr(∆Sit > 0|q1, h,∆p̂t > 0) ≈ 1
2
[1 + z(h|q1)

√
∆t] by a similar Taylor series

expansion to the one there. The unconditional drift of Si equals 1
2
z(h|q1): it is easy

to see that Pr(∆Sit > 0|q1, h) ≈ 1
2
[1 + 1

2
z(h|q1)

√
∆t] before observing prices.

The graph on the left of Figure 1 illustrates Lemma 1 by showing how every deviation

increases the drift of i’s score Si. As ∆t → 0, Si converges to a Brownian motion

with Sic ∼ N(0, c) in equilibrium, so the probability of punishment is approximately

1−Φ(z
√
c) when the punishment cutoff is zc. Many cutoffs give the right incentives;

I use the largest drift from any deviation, assuming that a firm produces at least 0:

z = sup
h,q1

{z(h|q1) : q1 ∈ {qu, qd, qo}, q1 + h ≥ 0}.
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Figure 1: Drift of i’s score as a function of i’s deviation (left) and a sample path of

i’s score in blue against a time-linear cutoff in red (right).

It is easy to see that 0 < z < ∞.4 I will now use the cutoff z to find a punishment

w that discourages firms from disobeying the mediator. I apply the approach of

Rahman (2013a) for general repeated games to this Cournot oligopoly and derive w

intuitively; see Rahman (2013a) for formal details. To apply this approach, I assume

that the magnitude of deviations is bounded below—as I show, the agreement above

cannot discourage profitable infinitesimal deviations in this environment.

Definition 1. Let η > 0. A deviation h from q is feasible if |h| ≥ η and h+ q ≥ 0.

This assumption can be easily dropped if firms face a kinked demand curve P (q), can

only produce in discrete amounts, have finitely many output choices, or incur fixed

output adjustment costs. Otherwise, I need it to sustain virtually full collusion.

Let ∆R(h|q1) =
∑

q2
[(q1 + h)P (q1 + q2 + h) − q1P (q1 + q2) − γh]µ12/µ1 be a firm’s

expected profit change from deviating by h after being asked to produce q1. Define

dR

dz
= sup

h,q1

{∆R(h|q1)/z(h|q1) : q1 ∈ {qu, qd, qo}, |h| ≥ η, q1 + h ≥ 0} .

dR/dz is a firm’s maximal incentive cost—the highest ratio of profit from a deviation

per unit increase in the drift of i’s score. If deviations are feasible, z(h|q1) is bounded

below by some z > 0, so dR/dz <∞. Let ϕ be the standard normal PDF.

Lemma 2. Every feasible deviation is discouraged for all small enough ∆t > 0 if

w >
rcerc

ϕ(z
√
c)1

2

√
c

dR

dz
. (2)

4By Lemma 1, z > 0, z(h|q1) is decreasing in h < 0, so z(h|q1) ≤ z(−q1|q1) <∞ for h ∈ [−q1, 0],

and z(h|q1) is increasing in h > 0. Now z < ∞ follows because z is bounded, since clearly z(h|q1)

converges to α1(q1)[(µ1u + µ1o)P (q1 + qd)− µ1uP (q1 + qu)− µ1oP (q1 + qo)] <∞ as h→∞.
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Proof Sketch. If firm 1 deviates by h after q1 was recommended in the first period,

the drift of S1 will increase by about 1
2
z(h|q1) before observing the first period’s

price. With no more deviations, the punishment probability increases from about

1−Φ(z
√
c) to about 1−Φ([zc− 1

2
z(h|q1)∆t]/

√
c). To discourage this deviation, future

costs e−rcw[1−Φ([zc− 1
2
z(h|q1)∆t]/

√
c)− (1−Φ(z

√
c))] must outweigh current gains

(1− e−r∆t)∆R(h|q1) ≈ r∆t∆R(h|q1). As ∆t→ 0, this rearranges in flows to

r∆R(h|q1) < e−rcwϕ(z
√
c)1

2
z(h|q1)/

√
c. (3)

Divide both sides by z(h|q1), take the supremum and rearrange to obtain (2). To

discourage every other deviation, start at the last period of the block. Ignoring

discounting, current gain flows are bounded above by the LHS of (3). The flow of

punishment costs is just like the RHS of (3) except that ϕ(z
√
c), the punishment

probability flow, is replaced with ϕ([z − θ]
√
c) for some θ ≥ 0, since past deviations

cannot lower the drift of S1. Since z is as large as any drift increase, θ ≤ z. Hence,

ϕ([z − θ]
√
c) ≥ ϕ(z

√
c), so (3) still holds with the probability flow adjusted by θ.

Last-period deviations are now discouraged (see Figure 2 below). But this argument

applies also to previous periods, so by induction every deviation is discouraged. �

By Lemma 2, w → 0 as r → 0 for any c > 0, so w is feasible for sufficiently patient

firms. Let R =
∑

(q1,q2) q1P (q1 + q2)µ12 be a firm’s expected revenue when everyone

follows the mediator. Using (3), lifetime equilibrium payoffs u are given by

u ≈ (1− δ)R + δ[Φ(z
√
c)u+ (1− Φ(z

√
c))(u− w)] ≈ R− rc

1− e−rc
1− Φ(z

√
c)

ϕ(z
√
c)1

2

√
c

dR

dz
.

Sufficiently patient firms can therefore sustain virtually full collusion by coordinating

infrequently to rarely punish each other, since normal hazard rates explode linearly:

lim
c→∞

lim
r→0

u = R.

Given a smooth set W of payoff profiles as in Figure 2 above, Rahman (2013a)

uses punishments and rewards to self-decompose W in “block-public” communication

equilibrium. To apply this result and complete the equilibrium construction above,

I verify below a necessary bound on deviation gains. I also offer general sufficient

conditions on an arbitrary demand curve P for such a Folk Theorem.

As in the previous section, firms can dispense with the mediator by communicating

their intentions directly, although this time with a delay of c instead of just ∆t.

Notice also that this construction generalizes easily to other environments, such as
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Figure 2: Discouraging multiple deviations (left) and feasible punishments (right).

ones with private monitoring and information. For instance, private monitoring is

arguably easier because firms can use each other’s private observations to keep scores

secret, which is the key to recycling incentives that facilitates collusion.

C. Folk Theorem with Bounded Deviation Gains

Rahman (2013a, Theorem 2) establishes a Folk Theorem for repeated games with

frequent actions that satisfy a conditional identifiability condition and a bound on

deviation gains. The former requirement is equivalent to the existence of a score

that has no drift after obeying the mediator but whose drift increases with every

deviation. Since such a score exists, the demand curve P (q) = q−e satisfies conditional

identifiability. For some demand curves, such as a linear one, this condition fails. By

definition, P exhibits conditional identifiability if

P (·|q) 6∈ conv{P (·|q + h) : q + h ≥ 0}+ L1 ∀q ≥ 0, (4)

where P (x|q) = P (q+x) and L1 = {λ1 : λ ∈ R} is the line generated by the constant

function. It is easy to see that both P (q) = α− βq and P (q) = e−γq fail conditional

identifiability, but many other demand curves satisfy it.

Write monopoly profit as Rm = qm[q−em − γ] = e[(1 − e)/γ](1−e)/e and a firm’s profit

from best-responding to monopoly output as Rd
m = q∗(qm)[(q∗(qm)+qm)−e−η], where

q∗(q) is a firm’s best response to q. To apply the Folk Theorem, I also assume that

Rd
m < 1

2
Rm. (5)

Claim 2. (5) is not pathological: for every γ > 0 there exists a nonempty open set

of parameter values E ⊂ (0, 1) such that e ∈ E is consistent with (5).
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Proof. The Cournot output when i’s marginal cost is γi equals qi = q[σi+(σj−σi)/e],
where σi = γi/γ, γ = γ1 +γ2 and q = q1 + q2 = [(2−e)/γ]1/e. Therefore, profit equals

Ri = e[σj + (σi − σj)/e]2e[(2 − e)/γ](1−e)/e. Firm 2 producing qm corresponds to an

equilibrium with γ1 = γ and γ2 solving q[σ2 + (σ1 − σ2)/e] = [(1 − e)/γ](1−e)/e. If

e = 1/2, for instance, then σ1 solves 9σ2
1(3σ1 − 1) = 1. The unique solution to this

cubic equation is σ1 ≈ 0.489, so σ2 = 0.511. By direct calculation, (5) holds if

σ1 + (σ2 − σ1)/e

σ1

σ1 + (σ2 − σ1)/e

σ2 + (σ1 − σ2)/e

1− e
2− e

< 1
2
. (6)

When σ1 ≈ 0.489, (6) holds. By continuity, it still holds near e = 1/2. �

Intuitively, (5) means that a firm is better off with its share of monopoly rents than

best-responding to the other firm monopolizing the market. I use this assumption as

follows. Broadly, the Folk Theorem in Rahman (2013a) gives individual punishments

and rewards to firms independently of each other, in contrast with Fudenberg, Levine

and Maskin (1994), say, who correlate continuation values across firms to avoid value-

burning. As a result, a firm that is rewarded must be compensated for every deviation

with its reward. Of course, any such deviation ought to lower the likelihood of reward,

yet in equilibrium the expected reward must still compensate for every deviation.

Hence, the feasible lifetime average payoff for a firm being motivated to produce a

temporarily disadvantageous amount with rewards must accommodate at least the

best deviation from its temporary disadvantage. Punishments, on the other hand, can

be rare in equilibrium as long as deviations increase the chance of punishments. This

argument originates in Compte (1998) in a discrete game with private monitoring.

For the monopoly profit line to be approachable for patient players, at least part of

it must remain after restricting reward-driven payoffs to compensate every deviation.

This is what (5) achieves. See Figure 2 above and Figure 3 below.

Formally, let W be a smooth set of payoff profiles in the interior of Un, the set of

feasible payoffs in excess of the static Nash equilibrium (qn, qn), where

Un = {R(q1, q2) ≥ R(qn, qn) : (q1, q2) ≥ 0}

and R(q1, q2) = (q1, q2)[(q1 +q2)−e−γ] is the profit profile when firms produce (q1, q2).

For W to be a subset of equilibrium payoffs, it must be locally self-decomposable

with continuation values at the end of a given block of length c. Just as with secret

monitoring, local self-decomposability is necessary at each point of ∂W . Consider a

point whose outward normal vector gives positive weight to one firm and negative

weight to the other, as in the bottom right-hand corner of Figure 2 above. At this
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Figure 3: Providing incentives with rewards.

point, the firm with negative weight must be given incentives with rewards, therefore

its expected continuation value must increase by at least its best deviation gains, as

was argued in the previous paragraph.

Formally, this is expressed as follows. LetMε be the set of probability measures over

output profiles in R2
+ with finite support and at least ε probability on each element.

Let

UJ
ε1,ε2

= {u ∈ Un : ∃µ ∈Mε1
k s.t. ui ≥ Rd

i (µ) + ε2 ∀i 6∈ J, ui ≤ Ri(µ)− ε2 ∀i ∈ J},

where Ri(µ) =
∑

(q1,q2) Ri(qi, qj)µ(qi, qj) is firm i’s profit from everyone following µ

and

Rd
i (µ) = max

h
{
∑

(q1,q2)

Ri(qi + h(qi), qj)µ(qi, qj) : qi + h(qi) ≥ 0}

is firm i’s profit after deviating according to h(qi) when qi was recommended. More-

over, define

U∗ε1,ε2 =
⋂

J⊂{1,2}

UJ
ε1,ε2

and U∗ =
⋃

ε1,ε2�0

U∗ε1,ε2 .

Claim 3. R(qd, qd) ∈ U∗ if (5) holds, so by Rahman (2013a, Theorem 2) sufficiently

patient firms can sustain virtually full collusion.

Proof. First, notice that if u ∈ intUn and J = {1, 2} or J = ∅ then there exist

ε1 > 0 and ε2 > 0 arbitrarily small such that u ∈ UJ
ε1,ε2

. If J = {1, 2}, this is clear:

choose µ to be a convex combination of (0, qm), (qm, 0) and (qn, qn) close enough to

u that ui ≤ Ri(µ) − ε2. If J = ∅ then again the result is clear: let µ put all its

probability mass on (qn, qn). For sufficiently small ε2 > 0, every u ∈ intUn satisfies
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ui ≥ Rd
i (µ) + ε2 = Ri(µ) + ε2, where Rd

i (µ) = Ri(µ) because µ is a Nash equilibrium

of the stage game. Now let J = {1}. If µ = (qm, 0) then Rd
m < 1

2
Rm, so for ε1 > 0

and ε2 > 0 small enough R(qd, qd) − ε2 ∈ UJ
ε1,ε2

. By symmetry, the same argument

applies to J = {2}.

Theorem 2 of Rahman (2013a) defines U slightly differently with µ having a fixed

support, but this is just to ensure conditional identifiability at the given support and

doesn’t change the result: by continuity, replace every µ here with one that places

arbitrarily small probability on some other appropriate output levels qu and qo so

that (4) is satisfied with this new support and the payoff bounds of the previous

paragraph are still respected within an arbitrarily small margin. �
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