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Online Appendix A: Structural Interpretation of Reduced-Form Parameters

This appendix formalizes how the reduced-form parameters we estimate should be interpreted
in a stylized dynamic model of the education production function. The model we outline below
follows previous work (e.g., Todd and Wolpin 2003), except that we focus exclusively on the role
of teachers, abstracting from other inputs to the education production function, such as peers or
parental investment.

Dynamic Model: Setup

The model is characterized by a speci�cation for scores, a speci�cation for earnings (or other
adult outcomes), and a rule that governs student and teacher assignment to classrooms.

Classroom Assignment Rule. School principals assign student i in school year t to a classroom
c = c(i; t) based on observed and unobserved determinants of student achievement. Principals
then assign a teacher j to each classroom c based on classroom and teacher characteristics. For
simplicity, we assume that each teacher teaches one class per year, as in elementary schools.

Test Scores. Let j = j(c(i; t)) denote student i�s teacher in school year t. Let �jt represent 
teacher j�s �test-score value-added�in year t.45 We scale �jt in student test-score SDs so that the 
average teacher has �jt = 0 and the e¤ect of a 1 unit increase in teacher value-added on end-of-year 
test scores is 1. Let ti(g) denote the calendar year in which student i reaches grade g; ti(0) denotes the 
year in which the student starts school (Kindergarten). As in Section I, student i�s test score in year 
t, A�it, is

(16) A�it = �Xit + �jt + "it

where Xit denotes observable determinants of student achievement, such as lagged test scores and
family characteristics and "it is an idiosyncratic student-level error.

Earnings. Earnings are a function of teacher quality over all years in school, up to grade G = 12.
Let � jt represent teacher j�s �direct earnings value-added,� i.e. the direct impact of teacher j on
earnings holding other factors �xed. We scale � jt so that the average teacher has � jt = 0 and
the standard deviation of � jt is 1. We assume that a teacher�s direct earnings value-added � jt is
linearly related to her test-score value-added �jt:

� jt = ��jt + �
?
jt

where � measures the relationship between earnings- and test-score VA and �?jt represents the
portion of a teacher�s earnings impact that is orthogonal to her test-score impact.

For a student in grade h, we model earnings Y �i as

(17) Y �i = �
YXit +

GX
g=h


g� j;ti(g) + "
Y
it

where 
g measures the e¤ect of teacher quality in grade g on earnings. The error term "Yit re�ects
individual heterogeneity in earnings ability, which may be correlated with academic ability "it.
The error "Yit may also be correlated with �jt and � jt because the principal may systematically sort

45To simplify notation, we write �j(i;t);t as �jt and always denote by j the teacher who taught student i in the
relevant year t. For instance, �j;t�s denotes the value-added in year t � s of the teacher j who taught student i in
year t� s. We adopt the same convention with � jt below as well.



certain types of students to certain teachers. Accounting for such selection is the key challenge in
obtaining unbiased estimates of teachers�causal impacts.

In the statistical model in (3), the teacher �xed e¤ect �j =
GP
g=h


g� j;ti(g) combines the e¤ects of

the current and subsequent teachers. We show how this a¤ects the interpretation of the reduced-
form treatment e¤ects we estimate in the next subsection.

Treatment E¤ects in the Dynamic Model

We de�ne two notions of a teacher�s treatment e¤ect on earnings: total earnings value-added
and the impact of test-score VA on earnings.

Total Earnings Value-Added. One natural de�nition of a teacher�s impact on earnings is the
e¤ect of changing the teacher of class c in grade g from j to j0 in year t on expected earnings:

�Yjt � �Yj0t = EYit(j(i; t))� EYit(j0(i; t))(18)

= 
g
�
�Yjt � �Yj0t

�
+

GX
s=g+1


s

�
E
h
�Yj;ti(s) j j (i; t)

i
� E

h
�Yj;ti(s) j j

0 (i; t)
i�
:(19)

Being assigned teacher j instead of j0 a¤ects earnings through two channels. The �rst term in (19)
represents the direct impact of the change in teachers on earnings. The second term represents the
indirect impact via changes in the expected quality of subsequent teachers to which the student is
assigned. For example, a higher achieving student may be tracked into a more advanced sequence
of classes taught by higher quality teachers. In a more general model, other determinants of
earnings such as parental e¤ort or peer quality might also respond endogenously to the change in
teachers. We refer to �Yjt as a teacher�s �total earnings value-added,�or �earnings VA�for short.

In principle, one can estimate teachers�total earnings VA using an approach identical to the one
we used to estimate teachers�test-score VA in our �rst paper. We could predict a teacher�s earnings
VA b�Yjt in year t based on mean residual earnings for students in other years with observational
data. Such a prediction would yield unbiased forecasts of teachers�impacts on earnings if

(20)
Cov

�
�Yjt; b�Yjt�

V ar
�b�Yjt� = 1)

Cov
�
"Yit ; b�Yjt�

V ar
�b�Yjt� = 0.

This condition requires that unobserved determinants of students�earnings are orthogonal to earn- 
ings VA estimates. Although conceptually analogous to the requirement for forecast unbiasedness 
of test-score VA stated in Assumption 1, (20) turns out not to hold in practice. Tests for sorting on 
pre-determined characteristics analogous to those in Section IV of our �rst paper reveal that (20) is 
violated for earnings VA estimates based on the same control vector (prior test scores and student 
and classroom demographics) that we used to estimate test score VA. In particular, we �nd 
substantial �e¤ects� of earnings VA estimates on parent income and family characteristics, 
indicating that our baseline control vector is unable to fully account for sorting when estimating 
earnings VA.

Why are we able to construct unbiased estimates of test score VA but not earnings VA? Control-
ling for lagged test scores e¤ectively absorbs most unobserved determinants of student achievement
on which students are sorted to classrooms, but does not account for unobserved determinants of
earnings. To see how this can occur, let �i denote a student�s academic ability, which a¤ects both
test scores and earnings, and �Yi denote determinants of earnings that are orthogonal to academic



achievement, such as family connections. Suppose students are sorted to teachers on the basis
of both of these characteristics. The key di¤erence between the two characteristics is that latent
student ability �i appears directly in Ai;t�1, whereas latent student earnings ability �

Y
i does not

directly appear in Ai;t�1. As a result, variation in academic ability �i can be largely purged from
the error term e"0it in the speci�cation for test scores in (16) by controlling for Ai;t�1.46 In contrast,
family connections are not re�ected in Ai;t�1 and therefore appear in the error term "Yit in the
speci�cation for earnings in (17). Under such a data generating process, we would be able to
identify teachers�causal impacts on test scores by controlling for Ai;t�1, but would not be able to
identify teachers�causal impacts on earnings because there is systematic variation across teachers
in students�earnings purely due to variation in family connections �Yi even conditional on Ai;t�1.

Consistent with this reasoning, we showed in our �rst paper that the key to obtaining forecast
unbiased estimates of test-score VA was to control for prior test scores, Ai;t�1. If we observed an
analog of lagged scores such as lagged expected earnings, we could e¤ectively control for �Yi and
potentially satisfy (20). Lacking such a control in our data, we cannot identify teachers� total
earnings VA and defer this task to future work.

Impacts of Test-Score VA on Earnings. An alternative objective, which we focus on in our
empirical analysis, is to identify the impacts of teachers�test-score based VA �jt on earnings. Let
�� denote the standard deviation of teachers�test-score VA. The reduced-form earnings impact of
having a 1 SD better teacher, as measured by test-score VA, in grade g is

�g = E[Yit j �j0t = �jt + ��]� E[Yit j �jt](21)

= 
g��� +
GX

s=g+1


s

�
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h
�Yj;ti(s) j �j0t
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�Yj;ti(s) j �jt
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:(22)

The reduced-form impact �g consists of two terms. The �rst is the direct e¤ect of having a better

teacher in grade g in school year T , which is attenuated by � =
Cov(�jt;�jt)

V ar(�jt)
because we only pick

up the portion of earnings impacts that projects onto test-score VA. The second is the impact of
having di¤erent teachers in subsequent grades.

Impacts of Multiple Teachers. Let ~�g denote the impact of teachers�test-score VA in grade
g on earnings holding �xed teachers�test-score VA in other grades. An intuitive speci�cation to
identify ~�g is to generalize (5) and regress earnings on teacher VA in all grades simultaneously:

(23) Y �i =
GX
g=0

h
~�g bmj;ti(g) +

~�gXi;ti(g)

i
+ "mi :

Identifying f~�gg in (23) requires the orthogonality condition Cov
� bmj;ti(g); "

m
i

�
= 0. This orthogo-

nality condition is violated if we do not include grade g � 1 test scores Ai;g�1 in the control vector
X because teacher assignment is correlated with lagged test scores and other factors that directly
a¤ect earnings, as shown in Table 7 of our companion paper. But Ai;g�1 is endogenous to grade
g � 1 teacher VA mb j;ti(g�1), implying that we cannot identify �~g by directly estimating (23). To 
address this problem, we instead estimate the degree of teacher tracking and then recover the net 
impacts �~g from our reduced form estimates �g using the iterative method in Section V.C.

46 In general, controlling for lagged test scores need not completely account for the variation in �i because lagged
test scores are noisy measures of latent ability. The fact that controlling for Ai;t�1 does eliminate bias in practice
(as shown in our �rst paper) suggests that students are allocated to classrooms based on factors highly correlated
with Ai;t�1 and other factors that directly a¤ect earnings (�Yi ).



Conceptually, estimating the e¤ects of multiple teachers requires simultaneous quasi-random
assignment of teachers in multiple grades. Our primary research design, which requires conditioning
on lagged test scores, only yields quasi-random variation in teacher assignment one grade at a
time. This is why we cannot directly estimate (23) and also cannot identify the substitutability or
complementarity of teachers�impacts across grades.

Online Appendix B: 1098-T Data and College Quality Index

Quality of 1098-T Data. We evaluate whether the 1098-T data capture college enrollment
accurately in three ways.47 First, we �nd that the correlation between enrollment counts for
students age 18-21 based on 1098-T�s and enrollment counts for colleges listed in the IPEDS dataset
from the Department of Education exceeds 0.95. Second, the aggregate counts of students enrolled
in college are aligned with estimates based on the CPS. In 2009, 27.4 million 1098-T forms were
issued (Internal Revenue Service, 2010). According to the Current Population Survey (US Census
Bureau, 2010, Tables V and VI), in October 2008, there were 22.6 million students in the U.S.
(13.2 million full time, 5.4 million part-time, and 4 million vocational). As an individual can be a
student at some point during the year but not in October and can receive a 1098-T form from more
than one institution, the number of 1098-T forms for the calendar year should indeed be higher
than the number of students as of October. Third, two independent evaluations of the Project
STAR class size experiment using data from 1098-T�s (Chetty et al. 2011) and the National Student
Clearinghouse (Dynarski et al. 2013) obtained nearly identical point estimates of the impacts of
class size on college attendance.

College Quality Index. Our index of college quality is based on the average earnings of the
individuals who attend each college. The construction of such an index requires several choices,
including (1) the age at which college attendance is measured, (2) the age at which earnings are
measured, (3) the cohort of students used, and (4) the de�nition of earnings. In what follows, we
assess the stability of rankings of colleges with respect to these four choices.

We begin by constructing measures of college quality that vary the four parameters above. In
each case, we �rst identify all individuals who are U.S. citizens as of February 19, 2013 to remove
those who were temporarily in the United States for college and for whom we do not have post-
college earnings data.48 We group individuals by the higher education institution they attended
and by age of attendance, as measured on December 31 of each year.49 We group individuals not
enrolled at a higher education institution at a given age (i.e., those who have no 1098-T form �led
on their behalf during the tax year) in a separate �no college�category. For each college (including
the �no college� group), we then compute earnings of the students at various ages (in real 2010
dollars). We begin by de�ning earnings based on individual W-2 wage earnings and then consider
broader income measures. We top code individual earnings at $10 million to reduce the in�uence
of outliers and we include only those who are alive at the age at which we measure earnings.

We �rst evaluate the stability of rankings of college quality with respect to the age at which we
measure earnings. Appendix Figure 1a plots the percentile ranking of colleges based on earnings
measured at age 23 (one-year after most students graduate from 4 year colleges) and age 27 (�ve-
years post-college) vs. the oldest age at which we can measure earnings of college graduates in our

47Legally, colleges are not required to �le 1098-T forms for students whose quali�ed tuition and related expenses
are waived or paid entirely with scholarships or grants. However, the forms appear to be available even for such
cases, perhaps because of automated reporting to the IRS by universities.
48Only current citizenship status is recorded in the database. As a result, the date at which we determine

citizenship is simply the date we accessed the data.
49We include the small fraction of students who attend more than one college in a single year in the determination

of college quality for each unique institution to which they are matched.



sample, which is 32 (ten-years post-college). We hold the age of college attendance constant at 20
and focus on the cohort of students born in 1979. To construct this �gure, we bin colleges into
100 percentiles based on their ranking using age 32 earnings (without any weighting) and compute
the mean percentile ranking based on earnings at age 23 and 27 within each bin. Rankings at age
27 are very well aligned with rankings at age 32, but rankings at age 23 are very poorly aligned
with measures based on older data. Colleges that have the highest-earning graduates at age 32
are commonly ranked average or even below-average based on data at age 23.

In Appendix Figure 1b, we extend this analysis to cover all ages from 23-32. This �gure plots
the rank correlation between college quality measured at age 32 with college quality measured using
earnings at earlier ages. Each point shows the correlation of an earnings-based percentile ranking
at a given age with the ranking based on earnings at age 32. The correlation is very low at age
23 and rises steeply at �rst before asymptoting to 1. At age 28 and after, the correlations are all
above 0.95, implying that we obtain similar rankings irrespective of what age one uses to measure
earnings of college graduates beyond this point. The stability of the index starting in the late
20�s is consistent with evidence from other studies that annual earnings starting in the late 20�s are
quite highly correlated with lifetime earnings (Haider and Solon 2006).

Panel A of Appendix Table 2 presents the rank correlations to corresponding to Appendix
Figure 1b. The rest of Appendix Table 2 studies the rank correlations between college quality
measures as we vary the other parameters. In Panel B, we vary the age at which we measure
college attendance from 18 to 25, holding �xed the age of earnings measurement at 30 for the
cohort born in 1981 (which is the oldest cohort for which we can measure college attendance at age
18). When we measure attendance between 18 and 22, college quality rankings are very highly
correlated with each other. The correlations begin to fall when we measure attendance at later
ages. This is intuitive, as ages 18-22 correspond to those at which most students would attend a
4-year college if they proceed through school at a normal pace.

Panel C of Appendix Table 2 varies the cohort of students included in the measure, including
students born between 1979 and 1981. We hold �xed the ages of college attendance and earnings
measurement at 20 and 30, respectively. The measures are very highly correlated across cohorts,
showing that the reliability of our index of college quality is quite high.

Finally, Panel D of Appendix Table 2 shows the relationship between college quality measures
based on alternative de�nitions of earnings. In addition to our baseline measure of mean W-2 earn-
ings, we consider median W-2 earnings and mean total income (W-2 wages plus self-employment
income from Form 1040). In each case we hold �xed age in college at 20, age of earnings mea-
surement at 30, and focus on the 1979 cohort. The correlation between these measures exceeds
0.94, showing that the rankings are not sensitive to the concept of income used to measure earn-
ings. We view W-2 earnings as the preferred measure because it is una¤ected by marriage and the
endogeneity of �ling.

Based on these results, we construct our preferred measure of college quality measuring college
attendance at age 20 and mean W-2 earnings at age 31. These choices allow us to combine data
from two cohorts � students born in 1979 and 1980 � for whom we measure earnings in 2010 and
2011, respectively. We code college quality as missing for a small number of institutions with fewer
than 100 students across the two cohorts and for institutions founded in or after 2001.50 If students
attended two or more colleges in a given year, we assign them the maximum college quality across
all colleges attended.

50As a result, 0.21% of students who attend college at age 20 in our sample are missing information on college
quality.



Online Appendix C: Identifying Teachers�Net Impacts

This appendix shows that the iterative method described in Section V.C recovers the net impacts
of teacher VA, ~�g, de�ned as the impact of raising teacher VA in grade g on earnings, holding �xed
VA in subsequent grades. The derivation below assumes that true VA is observed; when using VA
estimates instead of true VA, one must account for attenuation due to shrinkage, as discussed in
the text.

To simplify notation, we omit controls in this derivation; in practice, we residualize all the
dependent variables in the regressions below with respect to the standard control vector. Further-
more, we replace the year subscript t with a grade subscript g, so that mjg = mj;ti(g).

We begin by estimating the following equations using OLS for g 2 [4; 8]:

Yig = �gmjg + "
m
ig(24)

mjg0 = �gg0mjg + �
�
igg0 8g

0 > g(25)

The �rst set of equations identi�es the reduced-form impact of teacher VA in grade g on earnings.
The second set of equations identi�es the impact of teacher VA in grade g on teacher VA in future
grade g0. Note that identi�cation of the tracking coe¢ cients �gg0 using (13) requires the following
variant of Assumption 2:

Assumption 2A Teacher value-added in grade g is orthogonal to unobserved determinants of
future teacher value-added conditional on controls:

Cov
�
mjg; �

�
igg0

�
= 0:

After estimating f�gg and
�
�gg0

	
, we recover the net impacts ~�g as follows. In the additive model of

teacher e¤ects in Appendix A, earnings Yig for a student in grade g can be written as
P8
g0=4 ~�g0mjg0+

"mig . Substituting this de�nition of Yig into (24) and noting that �gg0 = Cov
�
mjg0 ;mjg

�
=V ar (mjg)

yields

�g =
Cov

�P8
g0=4 ~�g0mjg0 + "

m
ig0 ;mjg

�
V ar (mjg)

=
8X

g0=4

�gg0~�g0 :

One implication of Assumption 2, the orthogonality condition needed to identify earnings impacts,
is that

Cov
�
mjg0 ;mjg

�
= 0 for g0 < g

since past teacher quality mj(i;g0) is one component of the error term "�igt in (24). Combined with
the fact that �gg = 1 by de�nition, these equations imply that

�g = ~�g +

8X
g0=g+1

�gg0~�g0 8g < 8

�8 = ~�8:

Rearranging this triangular set of equations yields the following system of equations, which can be



solved by iterating backwards as in Section V.C:

~�8 = �8(26)

~�g = �g �
8X

g0=g+1

�gg0~�g0 8g < 8.

Online Appendix D: Policy Simulations

Deselection based on Average VA in Math and English. Suppose we deselect the 5% of elemen-
tary school teachers with the lowest mean standardized VA across math and English. Simulating a
bivariate normal distribution with a within-year correlation between bmjt across math and English
of r = 0:6, we calculate that teachers whose mean VA across subjects is in the bottom 5% have a
standardized VA that is �m� = 1:84 SD below the mean in both math and English.

To calculate the long-term earnings impact of replacing such teachers, we must identify the
impacts of changes in VA in one subject holding �xed VA in the other subject. Given the between-
subject VA correlation of r = 0:6, our earnings impact estimate of b = 1:34% re�ects the e¤ect
of a 1 SD improvement in a given subject (e.g. math) combined with a 0.6 SD improvement in
the other subject (English). Under the simplifying assumption that earnings impacts do not vary
across subjects, the impact of a 1 SD improvement in VA in a given subject is bs = b

1+0:6 = 0:84%.
Therefore, replacing a teacher with mean VA in the bottom 5% with an average teacher for one
school year in elementary school increases the present value of a student�s earnings by

G0 = $522; 000� 2� 1:84� 0:84% = $16; 100

and yields total gains of $454; 000 for an average-sized classroom.

Deselection on Estimated VA: Monte-Carlo Simulations. To calculate the integral in (15),
we �rst construct �A, the VCV matrix of

�!
A �t

j , the vector of past class average scores, using the
parameters of the autocovariance vector of test scores reported in Columns 1 and 2 of Table 2 of our
companion paper. We de�ne the o¤-diagonal elements of �A directly based on the autocovariances
�As reported in Table 2 of our �rst paper, setting the autocovariance �As = �A7 for s > 7. We
de�ne the diagonal elements of �A as the variance of mean class test scores, which we compute
based on the estimates in Table 2 as (Class+Teacher Level SD)2 + (Individual-Level SD)2=28:2,
where 28.2 is the average number of students per class.

We then simulate draws of average class scores from a N (0;�A) distribution for one million
teachers and calculate bmj;n+1 based on scores from the �rst n periods using the same method
used to construct the VA estimates in our companion paper. Finally, we calculate the conditional
expectation in (15) as the mean test score in year n+1 for teachers with bmj;n+1 in the bottom 5%
of the distribution.

We calculate the gains from deselection based on true VA in Figure 8b using analogous Monte
Carlo simulations, except that we draw scores from the VCV matrix of true VA �� instead of test
scores �A. The o¤-diagonal elements of the two matrices are identical, but the diagonal elements
of �� re�ect only the variance of teacher quality �2�. We use the quadratic estimates of �� reported
in the last row of Table 2 in our companion paper for this simulation.

Note that if one�s goal is to maximize expected gains over a teacher�s tenure, one should deselect
teachers after n years based on mean predicted VA over all future years, discounted by the survival
probabilities. We �nd that this more complex policy increases gains by less than 1% over 10 years



relative to the policy of deselecting teachers based on VA estimates at the end of year 3 that we
simulate in Figure 8b. Intuitively, because the VA drift process is close to an AR(1) process,
the relative weights on average scores from a teacher�s �rst three years do not change much when
projecting beyond year 4.

The calculations we report in the text assume that VA estimates have zero forecast bias. While
the estimates in our �rst paper do not reject this hypothesis, the upper bound on the 95% con-
�dence interval for our quasi-experimental estimate of forecast bias is 9%, which would imply
E [mj;n+1 j bmj;n+1] = 0:91bmj;n+1. This degree of forecast bias has modest impacts on the gains
from deselection: for instance, the earnings gains per class in year 4 based on 3 years of test score
data are GC(3) = $242; 000.



Student Subject Year Grade Class Teacher Test Score

Matched
to Tax
Data?

Earnings 
at Age 28

Bob Math 1992 4 1 Jones 0.5 1 $35K
Bob English 1992 4 1 Jones -0.3 1 $35K
Bob Math 1993 5 2 Smith 0.9 1 $35K
Bob English 1993 5 2 Smith 0.1 1 $35K
Bob Math 1994 6 3 Harris 1.5 1 $35K
Bob English 1994 6 4 Adams 0.5 1 $35K
Nancy Math 2002 3 5 Daniels 0.4 0 .
Nancy English 2002 3 5 Daniels 0.2 0 .
Nancy Math 2003 4 6 Jones -0.1 0 .
Nancy English 2003 4 6 Jones 0.1 0 .

APPENDIX TABLE 1
Structure of Linked Analysis Dataset

Notes: This table illustrates the structure of the linked analysis sample which combines information from the
school district database and the tax data. There is one row for each student-subject-school year. Individuals who
were not linked to the tax data have missing data on adult outcomes and parent characteristics. The values in
this table are not real data and are for illustrative purposes only.  



Age 23 Age 24 Age 25 Age 26 Age 27 Age 28 Age 29 Age 30 Age 31 Age 32
Age 23 1.000
Age 24 0.858 1.000
Age 25 0.747 0.949 1.000
Age 26 0.676 0.901 0.967 1.000
Age 27 0.614 0.852 0.928 0.972 1.000
Age 28 0.577 0.822 0.900 0.950 0.979 1.000
Age 29 0.553 0.802 0.882 0.934 0.962 0.983 1.000
Age 30 0.519 0.774 0.860 0.916 0.948 0.968 0.980 1.000
Age 31 0.505 0.761 0.848 0.905 0.937 0.958 0.971 0.986 1.000
Age 32 0.495 0.750 0.838 0.897 0.930 0.952 0.964 0.977 0.987 1.000

Age 18 Age 19 Age 20 Age 21 Age 22 Age 23 Age 24 Age 25
Age 18 1.000
Age 19 0.948 1.000
Age 20 0.930 0.975 1.000
Age 21 0.909 0.947 0.972 1.000
Age 22 0.880 0.914 0.940 0.968 1.000
Age 23 0.850 0.886 0.909 0.933 0.960 1.000
Age 24 0.803 0.830 0.851 0.873 0.893 0.932 1.000
Age 25 0.766 0.790 0.806 0.830 0.851 0.883 0.935 1.000

Panel D: Correlation of College Rankings Across Earnings Definitions

Cohort 1980

1.000

Cohort 1979
1.000
0.931
0.933

Cohort 1980
Cohort 1981 0.942

Cohort 1981

1.000

Cohort 1979

APPENDIX TABLE 2

Panel B: Correlation of College Rankings Across Ages at Which College Attendance is Measured

Correlation of College Rankings Based on Alternative Measures

Panel C: Correlation of College Rankings Across Birth Cohorts

Panel A: Correlation of College Rankings Across Ages at Which Earnings are Measured

Mean W-2 + Self-Employment Income
Median W-2 Earnings

Notes: This table displays Spearman rank correlations between alternative earnings-based indices of college quality,
each of which is defined by four characteristics: age of earnings measurement, age of college attendance, cohort of
students, and definition of earnings. Throughout this table, we construct college quality measures from only a single
birth cohort of students; however, the preferred measure used in the text combines two cohorts. Panel A varies the
age of earnings measurement from 23 to 32, holding fixed the age of college attendance at 20, using only the 1979
cohort of students, and using mean W-2 wage earnings. Panel B varies the age of college attendance from 18 to 25,
holding fixed the age of earnings measurement at 30, using only the 1981 cohort, and using mean W-2 wage
earnings. Panel C varies the birth cohort of students, holding fixed the age of college attendance at 20, the age of
earnings measurement at 30, and using mean W-2 wage earnings. Panel D varies the measure of earnings between
the baseline (mean W-2 wage earnings by college) and two alternatives (median W-2 wage earnings by college and
mean total income by college), holding fixed the age of college attendance at 20, the age of earnings measurement at
30, and using only the 1979 cohort of students.

1.000

Mean W-2 + S-E

0.989

Median W-2

1.000
0.943

Mean W-2

0.960
Mean W-2 Earnings 1.000



Dep. Var.:
College at Age 

20
College Quality 

at Age 20
Earnings at 

Age 28
Teenage 

Birth
Percent College Grads 

in ZIP at Age 28

(%) ($) ($) (%) (%)
(1) (2) (3) (4) (5)

No Controls 18.37 6,366 7,709 -6.57 1.87
(0.02) (6) (23) (0.02) (0.01)

With Controls 5.54 2,114 2,585 -1.58 0.34
(0.04) (11) (59) (0.05) (0.01)

Math 6.04 2,295 2,998 -1.21 0.31
Full Controls (0.06) (16) (83) (0.07) (0.02)

English 5.01 1,907 2,192 -2.01 0.37
Full Controls (0.06) (16) (88) (0.06) (0.02)

Mean of Dep. Var. 37.71 26,963 21,622 13.25 13.43

APPENDIX TABLE 3
Cross-Sectional Correlations Between Outcomes in Adulthood and Test Scores

Notes: Each cell reports coefficients from a separate OLS regression of an outcome in adulthood on test scores
measured in standard deviation units, with standard errors reported in parentheses. The regressions are
estimated on observations from the linked analysis sample (as described in the notes to Table 1). There is one
observation for each student-subject-school year, and we pool all subjects and grades in estimating these
regressions. The dependent variable is an indicator for attending college at age 20 in column 1, our earnings-based
index of college quality in column 2, wage earnings at age 28 in column 3, an indicator for having a teenage birth
(defined for females only) in column 4, and the fraction of residents in an individual’s zip code of residence with a
college degree or higher at age 28 in column 5. See notes to Table 1 for definitions of these variables. The
regressions in the first row include no controls. The regressions in the second row include the full vector of student-
and class-level controls used to estimate the baseline value-added model described in Section III.A, as well as
teacher fixed effects. The regressions in the third and fourth row both include the full vector of controls and split the
sample into math and English test score observations. The final row displays of the mean of the dependent
variable in the sample for which we have the full control vector (i.e., the sample used in the 2nd row).



Age: 20 21 22 23 24 25 26 27 28
(1) (2) (3) (4) (5) (6) (7) (8) (9)

No Controls 889 1,098 1,864 3,592 4,705 5,624 6,522 7,162 7,768
(20) (25) (28) (34) (39) (44) (48) (51) (54)

With Controls 392 503 726 1,372 1,759 1,971 2,183 2,497 2,784
(64) (79) (91) (110) (125) (139) (152) (161) (171)

Mean Earnings 6,484 8,046 9,559 11,777 14,004 16,141 18,229 19,834 21,320

Pct. Effect 6.1% 6.2% 7.6% 11.6% 12.6% 12.2% 12.0% 12.6% 13.1%
(with controls)

APPENDIX TABLE 4
Cross-Sectional Correlations Between Test Scores and Earnings by Age

Dependent Variable: Earnings ($)

Notes: Each cell in the first two rows reports coefficients from a separate OLS regression of earnings at a
given age on test scores measured in standard deviation units, with standard errors in parentheses. See
notes to Table 1 for our definition of earnings. We restrict this table to students born in cohorts 1979 and
1980, so that regressions are estimated on a constant subsample of the linked analysis sample. There is
one observation for each student-subject-school year, and we pool all subjects and grades in estimating
these regressions. The first row includes no controls; the second includes the full vector of student- and
class-level controls used to estimate the baseline value-added model described in Section III.A as well as
teacher fixed effects. Means of earnings for the estimation sample with controls are shown in the third row.
The last row divides the coefficient estimates from the specification with controls by the mean earnings to
obtain a percentage impact by age.



Earnings at College at College Quality Teenage
Dependent Variable: Age 28 at Age 20 Age 20 Birth

($) (%) ($) (%)
(1) (2) (3) (4)

Male 2,408 5.36 1,976 n/a
(88) (0.06) (16)

[22,179] [34.24] [26,205]

Female 2,735 5.74 2,262 -1.58
(80) (0.06) (17) (0.05)

[21,078] [41.07] [27,695] [13.25]

Non-minority 2,492 5.11 2,929 -0.72
(139) (0.08) (27) (0.04)

[31,587] [59.67] [34,615] [2.82]

Minority 2,622 5.65 1,734 -1.96
(62) (0.05) (12) (0.06)

[17,644] [28.98] [23,917] [17.20]

Low Parent Inc. 2,674 5.14 1,653 -1.72
(85) (0.06) (15) (0.07)

[18,521] [26.91] [23,824] [16.67]

High Parent Inc. 2,573 5.73 2,539 -1.29
(92) (0.06) (18) (0.06)

[26,402] [49.92] [30,420] [9.21]

APPENDIX TABLE 5
Heterogeneity in Cross-Sectional Correlations Across Demographic Groups

Notes: Each column reports coefficients from an OLS regression, with standard errors in
parentheses and the mean of the dependent variable in the estimation sample in brackets.
These regressions replicate the second row (full sample, with controls and teacher fixed
effects) of estimates in Columns 1-4 of Appendix Table 3, splitting the sample based on
student demographic characteristics. The demographic groups are defined in exactly the
same way as in Panel A of Table 6. We split rows 1 and 2 by the student's gender. We split
the sample in rows 3 and 4 based on whether a student belongs to an ethnic minority (black
or hispanic). We split the sample in rows 5 and 6 based on whether a student’s parental
income is higher or lower than median in the sample, which is $31,905. 



Earnings at College at College Quality Earnings at College at College Quality 
Dep. Variable: Age 28 Age 20 at Age 20 Age 28 Age 20 at Age 20

($) (%) ($) ($) (%) ($)
(1) (2) (3) (4) (5) (6)

Grade 4 7,561 18.29 6,378 2,970 6.78 2,542
(57) (0.05) (13) (122) (0.09) (23)

Grade 5 7,747 18.27 6,408 2,711 5.28 2,049
(50) (0.05) (13) (108) (0.08) (23)

Grade 6 7,524 17.95 6,225 2,395 4.92 1,899
(51) (0.05) (14) (140) (0.10) (27)

Grade 7 7,891 18.23 6,197 2,429 4.48 1,689
(54) (0.05) (14) (198) (0.11) (29)

Grade 8 7,795 19.10 6,596 2,113 5.43 2,106
(48) (0.05) (13) (141) (0.11) (28)

 APPENDIX TABLE 6
Cross-Sectional Correlations between Test Scores and Outcomes in Adulthood by Grade

No Controls With Controls

Notes: Each column reports coefficients from an OLS regression, with standard errors in parentheses. The
regressions in the first three columns replicate the first row (full sample, no controls) of estimates in Columns 1-3
of Appendix Table 3, splitting the sample by grade. The regressions in the second set of three columns replicate
the second row (full sample, with controls and teacher fixed effects) of estimates in Columns 1-3 of Appendix
Table 3, again splitting the sample by grade.



Dep. Var.:
College at 

Age 20
College Quality 

at Age 20
Earnings at 

Age 28

(%) ($) ($)
(1) (2) (3)

Teacher VA, with baseline controls 0.825 299 350
(0.072) (21) (92)

Observations  4,170,905 4,167,571 650,965

Teacher VA, with additional individual controls 0.873 312 357
(0.072) (21) (90)

Observations  4,170,905 4,167,571 650,965

Teacher VA, school clustered 0.825 299 350
(0.115) (36) (118)

Observations  4,170,905 4,167,571 650,965

Teacher VA, cells > 95% VA coverage 0.819 277 455
(0.090) (26) (202)

Observations  2,238,143 2,236,354 363,392

Teacher VA, cells > median match rate 0.912 345 563
(0.094) (28) (203)

Observations  2,764,738 2,762,388 278,119

APPENDIX TABLE 7
Robustness of Baseline Results to Student-Level Controls, Clustering, and Missing Data

Notes : The table presents robustness checks of the main results in Tables 2 and 3. In Panel A, the first
row replicates Columns 1 and 4 of Table 2 and Column 1 of Table 3 as a reference. The second row adds
individual controls, so that the control vector exactly matches that used to estimate the value-added model
(see Section III.A for details). Panel B clusters standard errors by school. In Panel C, the first row limits
the sample to those school-grade-year-subject cells in which we are able to calculate teacher value-added
for at least 95% of students. The second row limits the sample to those school-grade-year-subject cells in
which the rate at which we are able to match observations to the tax data is more than the school-level-
subject-specific median across cells.

Panel A: Individual Controls

Panel B: Clustering

Panel C: Missing Data



5% 4% 3% 2% 1% 0%
(1) (2) (3) (4) (5) (6) (7) (8)

Test Score 0.972 0.975 0.981 0.987 0.993 1.005 0.996 0.918
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 0.006 (0.006)

College at Age 20 0.93 0.90 0.88 0.86 0.82 0.72 0.79 1.10
(0.08) (0.08) (0.08) (0.07) (0.07) (0.07) (0.07) (0.09)

College Quality 329 320 315 307 299 276 292 371
at Age 20 (23) (22) (22) (21) (21) (21) (21) (25)

Earnings at Age 28 404 405 390 356 350 248 337 391
(102) (100) (99) (96) (92) (91) (94) (118)

Notes: This table presents results that use alternative approaches to trimming the tails of the distribution of
teacher VA. Each coefficient reports the coefficient on teacher VA from a separate OLS regression, with
standard errors clustered by school-cohort in parentheses. The regressions in the first row replicate the
baseline specification used in Column 1 of Table 3 in our companion paper (using VA scaled in units of
student test-score SDs), except that we include only the class-level controls that correspond to the baseline
set of controls in this paper (as in Section III.A). The regressions in rows 2-4 replicate the baseline
specification used in Columns 1 and 4 of Table 2 and Column 1 of Table 3. Columns 1-6 report results for
trimming the upper tail at various cutoffs. Column 7 shows estimates when both the bottom and top 1% of VA
outliers are excluded. Finally, Column 8 excludes teachers who have more than one classroom that is an
outlier according to Jacob and Levitt's (2003) proxy for cheating. Jacob and Levitt define an outlier classroom
as one that ranks in the top 5% of a test-score change metric defined in the notes to Appendix Figure 3. The
results in Column 5 (1% trimming) correspond to those reported in the main text.

APPENDIX TABLE 8
Impacts of Teacher Value-Added: Sensitivity to Trimming

Percent Trimmed in Upper Tail Bottom and
Top 1%

Jacob and
Levitt Proxy



Dependent Variable:

Age: 18 19 20 21 22 23 24 25 26 27 28

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Teacher Value-Added 0.61 0.81 0.82 0.98 0.71 0.44 0.58 0.46 0.50 0.46 -0.01
(0.06) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.07) (0.09) (0.11)

Mean Attendance Rate 29.4 36.8 37.2 35.7 32.2 24.4 20.31 17.3 15.7 13.9 12.3

Dependent Variable:

Age: 20 21 22 23 24 25 26 27 28

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Teacher Value-Added -32 -35 -18 44 74 141 230 254 350
(11) (14) (18) (25) (32) (44) (47) (63) (92)

Mean Earnings 5,696 7,293 9,473 12,582 15,080 17,547 18,833 20,229 21,256

Panel B: Wage Earnings

Notes: These results present the regression estimates underlying the results in Panel C of Figure 1 (in Panel A) and Panel
B of Figure 2 (in Panel B). The regressions in Panel A match the specification from Column 1 of Table 2, with college
attendance measured at different ages; those in Panel B match the specification from Column 1 of Table 3.

Impacts of Teacher Value-Added on Outcomes by Age
APPENDIX TABLE 9

College Attendance (%)

Panel A: College Attendance

Earnings ($)



Dep. Var.:

t t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5)

Teacher VA 0.993 0.533 0.362 0.255 0.221
(0.006) (0.007) (0.007) (0.008) (0.012)

Observations 7,401,362 5,603,761 4,097,344 2,753,449 1,341,266

APPENDIX TABLE 10
Impacts of Teacher Value-Added on Current and Future Test Scores

Test Score (SD)

Notes: This table presents the regression estimates plotted in Figure 4; see notes to that figure
for details.



Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Teacher Value-Added 226 289 292 482 198
(31) (33) (48) (61) (48)

Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Teacher Value-Added 194 270 173 402 198

Notes: This table presents the regression estimates plotted in Figure 7; see
notes to that figure for details.

APPENDIX TABLE 11
Impacts of Value-Added on College Quality by Grade

College Quality at Age 20

Panel A: Reduced-Form Coefficients

Panel B: Coefficients Net of Teacher Tracking



Grade 5 Grade 6 Grade 7 Grade 8

Grade 4 Teacher VA 0.028 0.057 0.024 0.027
(0.007) (0.006) (0.004) (0.005)

Grade 5 Teacher VA 0.059 0.014 0.019
(0.006) (0.005) (0.014)

Grade 6 Teacher VA 0.198 0.196
(0.012) (0.014)

Grade 7 Teacher VA 0.405
(0.017)

APPENDIX TABLE 12
Tracking: Impact of Current Teacher VA on Future Teachers' VA

Future Teacher Value-Added

Notes: Each cell reports the coefficient from a separate regression of teacher value-
added in a subsequent grade on teacher value-added in the current grade, with standard
errors at the school-cohort level. As in Figure 7, we first residualize each dependent
variable (i.e. lead VA, two-year lead VA, etc.) with respect to the classroom-level
baseline control vector (see notes to Table 2 for more details). We then regress
residualized future VA on current VA interacted with grade. We multiply the resulting
regression coefficients by 1.63 to account for the attenuation bias due to using VA
estimates instead of true VA as the dependent variable (see text for details). All
regressions are estimated using observations in the linked analysis sample for which the
student is progressing through grades at normal pace (e.g., the student is in sixth grade
two years after fourth grade).



Years Used to 
Estimate VA

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

1 $225,843 $1,249,636 $406,988 $2,251,954
2 $256,651 $1,420,105
3 $265,514 $1,469,147
4 $269,297 $1,490,081
5 $272,567 $1,508,174
6 $274,143 $1,516,891
7 $275,232 $1,522,918
8 $276,665 $1,530,845
9 $278,112 $1,538,851

10 $279,406 $1,546,013

School Years 
Since Teacher 

was Hired

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

Present Value of 
Earnings Gain 

per Class

Undiscounted 
Sum of Earnings 
Gain per Class

4 $265,514 $1,469,147 $406,988 $2,251,954
5 $229,923 $1,272,213 $339,870 $1,880,574
6 $202,631 $1,121,202 $297,569 $1,646,511
7 $183,538 $1,015,557 $252,422 $1,396,703
8 $172,867 $956,509 $222,339 $1,230,251
9 $161,575 $894,032 $212,185 $1,174,067

10 $157,812 $873,209 $193,255 $1,069,324
11 $155,349 $859,581 $180,876 $1,000,824
12 $156,582 $866,400 $180,909 $1,001,007
13 $156,547 $866,206 $181,027 $1,001,662

Avg. Gain $184,234 $1,019,405 $246,744 $1,365,288

Notes: In Panel A, we present the earnings impacts per classroom of a policy that deselects the bottom 5%
of teachers after N years and replaces them with a teacher of median quality, where we vary N from 1 to
10. We calculate these values using the methods described in Section VI. The first column presents
estimates of the NPV earnings gains of deselection based on teacher value-added that is estimated from N 
years of observing a single average-sized (28.2 students) classroom per year of student scores. The third
column shows the theoretical gain from deselecting teachers based on current true value-added; this value
does not vary across years. Panel B presents the per class impacts of deselecting teachers (after 3 years
of observation) in subsequent school years. Column 1 reports the present value of earnings gains in the
ten years (i.e., years 4-13) after deselecting teachers based on their VA estimate in year 4, constructed
using the past three years of data. The first number in Column 1 of Panel B matches the 3rd number in
Column 1 of Panel A. Column 3 presents analogous values, instead deselecting teachers based on true
value-added in year 4, so that the gains in the year 4 match the gains reported in Column 3 of Panel A.
Columns 2 and 4 in each panel replicate Columns 1 and 3, presenting the undiscounted sum of future
earnings impacts instead of present values. The bottom row in the table reports the unweighted means of
the estimates from years 4-13 in Panel B for each column; these are the values reported in the introduction
of the paper.

Earnings Impacts of Replacing Teachers Below 5th Percentile with Average Teachers
APPENDIX TABLE 13

Panel B: Impacts in Subsequent School Years

Selection on Estimated VA Selection on True VA
Panel A: Impacts in First Year After Deselection

Selection on Estimated VA in Yr. 4 Selection on True VA in Yr. 4



APPENDIX FIGURE 1
Stability of College Rankings by Age of Earnings Measurement

a) Rankings of Colleges Based on Earnings at Ages 23 and 27 vs. Age 32
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b) Correlation of College Rankings Based on Earnings at Age 32

With Rankings Based on Earnings at Earlier Ages
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Notes: In Panel A, we take all college attendees in 1999 at age 20, as recorded by 1098-T forms, and construct three separate
college quality indices by averaging W-2 earnings by college at ages 23, 27, and 32. We convert each college quality measure into
a percentile rank based on the within-age distribution of college quality. We then bin colleges into 100 equal-sized (percentile)
bins using the college quality measure based on age 32 earnings and plot the mean percentile rank of colleges in each bin using
the age 23 (in circles) and age 27 (in triangles) measures. The best-fit lines are estimated from an unweighted OLS regression
of percentile ranks run at the college level. In Panel B, we take the same college attendees and calculate ten separate college
quality measures by averaging W-2 earnings by college at each age from 23-32. We then plot the Spearman rank correlation
between each college quality measure based on earnings at ages 23-31 and the college quality measure based on earnings at
age 32.



APPENDIX FIGURE 2
Correlations Between Outcomes in Adulthood and Test Scores

a) College Attendance
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Notes: These figures present binned scatter plots corresponding to the cross-sectional regressions of outcomes in adulthood on
test scores presented in Columns 1-4 of Appendix Table 3. See notes to Table 1 and Appendix Table 3 for further information
on the variable definitions and sample specification. In each panel, the series in circles corresponds to the first row of estimates,
without controls. The series in triangles corresponds to the second row of estimates, which includes the full control vector used
to estimate the value-added model. To construct the series in circles, we bin raw test scores into twenty equal-sized groups
(vingtiles) and plot the means of the outcome within each bin against the mean test score within each bin. To construct the
series in triangles, we first regress both the test scores and adult outcomes on the individual and class controls and teacher
fixed effects and compute residuals of both variables. We then divide the test score residuals into twenty equal-sized groups
and plot the means of the outcome residuals within each bin against the mean test score residuals within each bin. Finally, we
add back the unconditional mean of both test scores and the adult outcome in the estimation sample to facilitate interpretation
of the scale. We connect the dots in the non-linear series without controls and show a best-fit line for the series with controls,
estimated using an OLS regression on the microdata.



APPENDIX FIGURE 3
Jacob and Levitt (2003) Proxy for Test Manipulation vs. Value-Added Estimates
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Notes: This figure plots the relationship between our leave-out-year measure of teacher value added and Jacob and Levitt’s
proxy for cheating. The regressions are estimated on the linked analysis sample (as described in the notes to Table 1). Teacher
value-added is estimated using data from classes taught by a teacher in other years, following the procedure described in
Section III.A. The y-axis variable is constructed as follows: Let ∆Āc,t = Āc,t − Āc,t−1 denote the change in mean test scores
from year t− 1 and t for students in classroom c. Let Rc,t denote the ordinal rank of classroom c in ∆Āc,t among classrooms
in its grade, subject, and school year and rc,t the ordinal rank as a fraction of the total number of classrooms in that grade,
subject, and school year. Jacob and Levitt’s (2003) measure for cheating in each classroom is JLc = (rc,t)2 + (1 − rc,t+1)2.

Higher values of this proxy indicate very large test score gains followed by very large test score losses, which Jacob and
Levitt show to be correlated with a higher chance of having suspicious patterns of answers indicative of cheating. Following
Jacob and Levitt, we define a classroom as an outlier if its value of JLc falls within the top 5% of classrooms in the data.
To construct the binned scatter plot, we group classrooms into percentiles based on their teacher’s estimated value-added,
ranking classrooms separately by school-level and subject. We then compute the percentage of Jacob-Levitt outliers within
each percentile bin and scatter these fractions vs. the percentiles of teacher VA. Each point thus represents the fraction of
Jacob-Levitt outliers at each percentile of teacher VA. The dashed vertical line depicts the 99th percentile of the value-added
distribution. We exclude classrooms with estimated VA above this threshold in our baseline specifications because they have
much higher frequencies of Jacob-Levitt outliers. See Appendix Table 8 for results with trimming at other cutoffs.



APPENDIX FIGURE 4
Correlation of Earnings Over the Lifecyle
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Notes: This figure plots the correlation of wage earnings at each age x with wage earnings at age x+ 12. We calculate wage
earnings as the sum of earnings reported on all W-2 forms for an individual in a given year. Individuals with no W-2 are
assigned 0 wage earnings. Earnings at age x are calculated in 1999, the first year in which we have W-2 data, and earnings at
age x+12 are calculated in 2011, the last year of our data. We calculate these correlations using the population of current U.S.
citizens. The dashed vertical line denotes age 28, the age at which we measure earnings in our analysis of teachers’ impacts.
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