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Online Appendix A: Value-Added Estimation Methods

In this appendix, we provide a step-by-step guide to implementing our method of estimating
VA in the presence of drift. In practice, we cannot follow exactly the method described in Section
2.2 because data availability varies across teachers. For instance, there are di¤erent numbers of
students per class and teachers have a di¤erent number of past and future classes from which to
construct value-added in any given year. We calculate value-added in three steps, separately for
each subject (math and English) and school level (elementary and middle).

Step 1 [Residualization of Test Scores]: We begin by residualizing student scores A�it with respect
to controls Xit by running an OLS regression with teacher �xed e¤ects of the form

A�it = �j + �Xit

and constructing residuals
Ait = A�it � �̂Xit:

Step 2 [Estimation of Variance Components]: Next, we estimate the individual-level variance
of residual test scores, �2" = V ar("it), as

�̂2" =MSE �
�

N � 1
N �K � C + 1

�
where MSE is the variance of the within-classroom deviations of Ait, N is the total number of
students, C is the total number of classrooms, and K is the number of control variables in the Xit

control vector. The scaling term is required to correct the degrees of freedom for the fact that we
have already estimated K parameters to form the residual Ait. We also estimate V ar(Ait), the
total variance of Ait, again accounting for the prior estimation of �̂ when calculating the degrees
of freedom correction.

At this point, we collapse the data to the classroom-level by constructing the average residualized
score �Act for each classroom c and proceed to use class-level means for the remaining steps. In
middle school, teachers teach more than one class per year. We handle such cases by collapsing the
data to the teacher-year level. We do so by constructing precision-weighted averages of classroom-
average scores within a teacher-year. The weight for classroom c in year t is

hct =
1

�̂2� +
�̂2"
nct

;

where �̂2� is an estimate of the class-level variance component and nct denotes the number of
students in the classroom. We construct this estimate as �̂2� = V ar(Ait) � �̂2" � �̂A0, where �̂A0
is our estimate of the within-teacher-year between-class covariance in average scores, re�ecting the
teacher-level component of the variance. To simplify computation, we follow Kane and Staiger
(2008) and randomly sort classrooms within each teacher-year cell; we then estimate the covariance
�̂A0 based on the covariance of the test scores of adjacent classrooms in each teacher-year cell,
weighting each pair of classrooms by the sum of students taught.

We next estimate the covariances between mean scores across years within teacher, denoted
�̂As, in both elementary and middle schools. We allow a separate covariance for each possible time
lag s 2 f1; 2; : : :g denoting the separation between the two years in which the classes were taught.
We weight each teacher-year pair by the sum of students taught. We set all covariances for lags
greater than 7 to �̂A7, the estimated covariance for the 7th lag.



Step 3: [Construction of VA Estimates] In this step, we use the parameter estimates to construct
a VA estimate for each teacher j in each year t that she appears in the data. We depart from the
method described in Section 2.2 by using data from all other years �not just years before year t �
to increase the precision of our VA estimates.42 Let

�!
A �t

j denote the vector of teacher-year-mean
scores used to predict teacher j�s VA in year t. Let Njt denote the length of this vector, so that
we are using Njt other years to project scores in year t. We construct the best linear predictor of
teacher quality in year t as b�jt = ���1Ajtjt�0�!A�t

j

where jt is a Njt�1 vector and �Ajt is a Njt�Njt matrix. We denote the weights on scores
�!
A�t
j

by  jt = �
�1
Ajt
jt. If the mth and nth element of the scores vector

�!
A�t
j are Ajs and Ajs0 , the mth

element of the diagonal of �Ajt in middle school is�
�Ajt

�
mm

= �̂A0 +
1P

c2fc:j(c)=jg hcs
,

where the denominator of the second term is the sum of precisions for the classes taught by a
teacher in year s, which is the precision of the teacher-year mean in year s. In elementary
school, where teachers teach one class per year, we cannot estimate �̂A0 but we can estimate
�̂A0 + �̂

2
� = V ar(Ait)� �̂2". Here, the mth element of the diagonal of �Ajt is

�
�Ajt

�
mm

= (�̂A0 + �̂
2
�) +

�̂2"
nct
.

In both elementary and middle school, the mnth o¤-diagonal element of �Ajt is�
�Ajt

�
mn
= �̂A;js�s0j

and the mth element of jt is �
jt
�
m
= �̂A;jt�sj.

Because the distribution of other years in which data are available varies both across teachers j
and across the years t within a teacher, both the matrix �Ajt and the vector jt will vary across j
and t. We therefore construct these elements separately for each teacher-year in the data. Note
that we can use this algorithm even if data on test scores for teacher j�s students are missing in
year t, since those data are not required to estimate b�jt.
Online Appendix B: Teacher-Level Bias

In this appendix, we de�ne an alternative notion of bias in VA estimates, which we term
�teacher-level bias,�and characterize its relationship to the concept of forecast bias that we focus
on in the text.43 For simplicity, we follow Rothstein (2009) and focus on the case without drift
in teacher value-added.44 In this case, �jt = �j in all periods and our estimator for teacher VA

42Using data from other years increases precision not just by increasing sample size but also because we have more
data from nearby years. For example, data from year t+1 are more informative for VA in year t than data from year
t� 2 in the presence of drift.
43We thank Jesse Rothstein for drawing our attention to the distinction between teacher-level bias and forecast

bias.
44Drift complicates the asymptotics because additional information from prior years does not eliminate estimation

error in expected VA.



simpli�es to

(17) b�jt = �A�tj
�2�

�2� + (�
2
� + �

2e"=n)=(t� 1) ,
as shown in (9). Let b��j = limt!1 b�jt denote the value to which the VA estimate for teacher j
converges as the number of classrooms observed approaches in�nity. The asymptotic bias in the
estimate of teacher j�s VA is

(18) !j = b��j � �j .
De�nition 2. Value-added estimates are unbiased at the teacher-level if V ar(!j) = 0.

VA estimates are biased at the teacher-level if they are inconsistent, i.e. if we systematically
mispredict a given teacher�s performance when estimation error in VA vanishes. Such teacher-level
bias is relevant for determining whether a value-added model treats all teachers equitably.

Forecast vs. Teacher-Level Bias. To see the connection between teacher-level bias and forecast
bias, consider an experiment in which students are randomly assigned to teachers in year t. By
the de�nition of forecast bias,

1�B
�b��j� =

Cov
�
Ait; b��j�

V ar(b��j )
=

V ar
�
�j
�
+ Cov

�
�j ; !j

�
V ar

�
�j
�
+ V ar (!j) + 2Cov

�
�j ; !j

�
where the second step follows because Cov

�
Ait � �j ; b��j� = 0 under random assignment in year t.

Hence,
B
�b��j� = 0, V ar(!j) + Cov

�
�j ; !j

�
= 0.

This identity has two implications. First, if VA estimates are unbiased at the teacher-level, they
must also be forecast-unbiased: V ar(!j) = 0) B(b��j ) = 0. Second, and more importantly for our
application, forecast-unbiased VA estimates can be biased at the teacher level only if Cov

�
�j ; !j

�
=

�V ar(!j). Intuitively, if the teacher-level bias !j is negatively correlated with true value-added,
then the covariance of VA estimates with true scores is reduced, but the variance of VA estimates
also falls. If the two forces happen to cancel out exactly, B(b��j ) could be 0 even if V ar(!j) > 0. In
this sense, if a pre-speci�ed value-added model produces VA estimates b�jt that exhibit no forecast
bias, the existence of teacher-level bias is a measure-zero (knife-edge) case.

Note that estimating the degree of forecast bias is simpler than teacher-level bias because
forecast bias can be directly estimated using �nite-sample estimates of b�jt without any additional
inputs. In contrast, estimating teacher-level bias requires accounting for the impacts of estimation
error on b�jt to construct the limit b��j , which is a non-trivial problem, particularly in the presence
of drift.

Online Appendix C: Matching Algorithm

We follow the matching algorithm developed in Chetty et al. (2011) to link the school district
data to tax records. The algorithm was designed to match as many records as possible using
variables that are not contingent on ex post outcomes. Date of birth, gender, and last name
in the tax data are populated by the Social Security Administration using information that is



not contingent on ex post outcomes. First name and ZIP code in tax data are contingent on
observing some ex post outcome. First name data derive from information returns, which are
typically generated after an adult outcome like employment (W-2 forms), college attendance (1098-
T forms), or mortgage interest payment (1098 forms). The ZIP code on the claiming parent�s
1040 return is typically from 1996 and is thus contingent on the ex post outcome of the student
not having moved far from her elementary school for most students in our analysis sample.

Chetty et al. (2011) show that the match algorithm outlined below yields accurate matches
for approximately 99% of cases in a school district sample that can be matched on social security
number. Note that identi�ers were used solely for the matching procedure. After the match was
completed, the data were de-identi�ed (i.e., individual identi�ers such as names were stripped) and
the statistical analysis was conducted using the de-identi�ed dataset.

Step 1 [Date of Birth, Gender, Last Name]: We begin by matching each individual from the
school-district data to Social Security Administration (SSA) records. We match individuals based
on exact date of birth, gender, and the �rst four characters of last name. We only attempt to
match individuals for which the school records include a valid date of birth, gender, and at least one
valid last name. SSA records all last names ever associated in their records with a given individual;
in addition, there are as many as three last names for each individual from the school �les. We
keep a potential match if any of these three last names match any of the last names present in the
SSA �le.

Step 2 [Rule Out on First Name]: We next check the �rst name (or names) of individuals from
the school records against information from W2 and other information forms present in the tax
records. Since these �les re�ect economic activity usually after the completion of school, we use
this information in Step 2 only to �rule out�possible matches in order to minimize selection bias.
In particular, we disqualify potential matches if none of the �rst names on the information returns
match any of the �rst names in the school data. As before, we use only the �rst four characters of
a �rst name. For many potential matches, we �nd no �rst name information in the tax information
records; at this step we retain these potential matches. After removing potential matches that are
mismatched on �rst name, we isolate students for whom only one potential match remains in the
tax records. We declare such cases a match and remove them from the match pool. We classify
the match quality (MQ) of matches identi�ed at this stage as MQ = 1.

Step 3 [Dependent ZIP code]: For each potential match that remains, we �nd the household
that claimed the individual as a dependent (if the individual was claimed at all) in each year. We
then match the location of the claiming household, identi�ed by the 5-digit ZIP code, to the home
address ZIP code recorded in the school �les. We classify potential matches based on the best ZIP
code match across all years using the following tiers: exact match, match within 10 (e.g., 02139
and 02146 would qualify as a match), match within 100, and non-match. We retain potential
matches only in the highest available tier of ZIP code match quality. For example, suppose there
are 5 potential matches for a given individual, and that there are no exact matches on ZIP code,
two matches within 10, two matches within 100, and one non-match. We would retain only the
two that matched within 10. After this procedure, we isolate students for whom only one potential
match remains in the tax records. We declare such cases a match and remove them from the match
pool. We classify the match quality of matches identi�ed at this stage as MQ = 2.

Step 4 [Place of Birth]: For each potential match that remains, we match the state of birth
from the school records with the state of birth as identi�ed in SSA records. We classify potential
matches into three groups: state of birth matches, state of birth does not match but the SSA state
is the state where the school district is, and mismatches. Note that we include the second category
primarily to account for the immigrants in the school data for whom the recorded place of birth is



outside the country. For such children, the SSA state-of-birth corresponds to the state in which
they received the social security number, which is often the �rst state in which they lived after
coming to the country. We retain potential matches only in the best available tier of place-of-birth
match quality. We then isolate students for whom only one potential match remains in the tax
records. We declare such cases a match and remove them from the match pool. We classify the
match quality of matches identi�ed at this stage as MQ = 3.

Step 5 [Rule In on First Name]: After exhausting other available information, we return to
the �rst name. In step 2 we retained potential matches that either matched on �rst name or for
which there was no �rst name available. In this step, we retain only potential matches that match
on �rst name, if such a potential match exists for a given student. We also use information on
�rst name present on 1040 forms �led by potential matches as adults to identify matches at this
stage. We then isolate students for whom only one potential match remains in the tax records.
We declare such cases a match and remove them from the match pool. We classify the match
quality of matches identi�ed at this stage as MQ = 4.

Step 6 [Fuzzy Date-of Birth]: In previous work (Chetty et al. 2011), we found that 2-3% of
individuals had a reported date of birth that was incorrect. In some cases the date was incorrect
only by a few days; in others the month or year was o¤ by one, or the transcriber transposed the
month and day. To account for this possibility, we take all individuals for whom no eligible matches
remained after step 2. Note that if any potential matches remained after step 2, then we would
either settle on a unique best match in the steps that follow or �nd multiple potential matches even
after step 5. We then repeat step 1, matching on gender, �rst four letters of last name, and fuzzy
date-of-birth. We de�ne a fuzzy DOB match as one where the absolute value of the di¤erence
between the DOB reported in the SSA and school data was in the set f1; 2; 3; 4; 5; 9; 10; 18; 27g in
days, the set f1; 2g in months, or the set f1g in years. We then repeat steps 2 through 5 exactly as
above to �nd additional matches. We classify matches found using this fuzzy-DOB algorithm as
MQ = 5:X, where X is the corresponding MQ from the non-fuzzy DOB algorithm. For instance,
if we �nd a unique fuzzy-DOB match in step 3 using dependent ZIP codes, then MQ = 5:2.

The following table shows the distribution of match qualities for all students. We match 88.6%
of students and 89.8% of student-subject observations in the analysis sample used to calculate VA.
Unmatched students are split roughly evenly among those for whom we found multiple matches
and those for whom we found no match.

Match Quality (MQ) Frequency Percent Cumulative Match Rate
1 650002 47.55% 47.55%
2 511363 37.41% 84.95%
3 24296 1.78% 86.73%
4 10502 0.77% 87.50%
5.1 14626 1.07% 88.57%
5.2 779 0.06% 88.63%
5.3 96 0.01% 88.63%
5.4 31 0.01% 88.64%

Multiple Matches 75010 5.49%
No Matches 80346 5.88%
Total 1367051 88.64%

Online Appendix D: Unconditional Sorting of Students to Teachers

In this appendix, we assess the unconditional relationship between teacher VA and student



observables to determine whether high VA teachers are systematically assigned to certain types of
students (see Section 5.3). We are able to study such unconditional sorting because our method of
constructing student test score residuals in (5) only exploits within-teacher variation. Prior studies
that estimate VA typically construct test score residuals using both between- and within-teacher
variation and thus do not necessarily obtain a global ranking. For example, suppose schools with
higher SES students have better teachers. By residualizing test scores with respect to student SES
before computing teacher VA, one would attribute the di¤erences in outcomes across these schools
to di¤erences in student SES rather than teacher quality. As a result, one only obtains a relative
ranking of teachers conditional on student SES and cannot compare teacher quality across students
with di¤erent characteristics. Using within-teacher variation to estimate the coe¢ cients on the
control vector Xit resolves this problem and yields a global ranking of teachers across the school
district.

To estimate unconditional sorting of students to teachers based on observable characteristics
Xit, one would ideally regress teacher VA �jt on Xit:

(19) �jt = �+ �Xit + �it.

Since true VA is unobserved, we substitute VA estimates b�jt for �jt on the left hand side of (19).
This yields an attenuated estimate of � because b�jt is shrunk toward 0 to account for estimation
error (see Section 2.2). If all teachers taught the same number of classes and had the same
number of students, the shrinkage factor would not vary across observations. In this case, we
could identify � by using b�jt as the dependent variable in (19) and multiplying the estimate of
� by SD(�jt)=SD(b�jt). In the sample for which we observe lagged test scores, the standard
deviation of teacher VA estimates is SD(�jt)=SD(b�jt) = 1:56. We therefore multiply the estimate
of � obtained from estimating (19) with b�jt as the dependent variable by 1:56. This simple
approach to correcting for the attenuation bias is an approximation because the shrinkage factor
does vary across observations. However, our estimates of the magnitudes of unconditional sorting
are small and hence further adjusting for the variation in shrinkage factors is unlikely to a¤ect our
conclusions.

We report estimates of unconditional sorting in Appendix Table 2. Each column reports esti-
mates of an OLS regression of VA estimates b�jt on various observables (multiplied by 1.56), with
standard errors clustered at the teacher level to account for correlated errors in the assignment
process of classrooms to teachers.

We begin in Column 1 by regressing b�jt on lagged test scores A�i;t�1. Better students are
assigned slightly better teachers: students who score 1 unit higher in the previous grade get a
teacher whose VA is 0.0122 better on average. The tracking of better students to better teachers
magni�es gaps in achievement, although the magnitude of this ampli�cation e¤ect is small relative
to other determinants of the variance in student achievement.

Column 2 shows that special education students are assigned teachers with 0.003 lower VA on
average. Again, this e¤ect is statistically di¤erent from zero, but is quantitatively small. Relative
to other students with similar prior test scores, special education students receive slightly higher
VA teachers (not reported).

In Column 3, we regress b�jt on parent income. A $10,000 (0.3 SD) increase in parent income
raises teacher VA by 0.00084, with the null hypothesis of 0 correlation rejected with p < 0:0001.
Column 4 demonstrates that controlling for a student�s lagged test score A�i;t�1 entirely eliminates
the correlation between teacher VA and parent income.

Column 5 analyzes the correlation between teacher VA and ethnicity. Mean teacher quality is
no di¤erent on average across minority (Hispanic or Black) vs. non-minority students.



Finally, Columns 6 and 7 analyze the relationship between teacher value-added and school-level
demographics. The relationship between mean parent income in a school and teacher quality
remains quite small (Column 6) and there is no relationship between fraction minority and school
quality.

Finally, we assess the extent to which di¤erences in teacher quality contribute to the gap in
achievement by family income. In the sample used to estimate VA, a $10,000 increase in parental
income is associated with a 0.065 SD increase in 8th grade test scores (averaging across math
and English). To calculate how much smaller this gradient would be if teacher VA did not vary
with parent income, we must take a stance on how teachers� impacts cumulate over time. In
our companion paper, we estimate that 1 unit improvement in teacher VA in a given grade raises
achievement by approximately 0.53 units after 1 year, 0.36 after 2 years, and stabilizes at approx-
imately 0.25 after 3 years (Chetty, Friedman, and Rocko¤ 2014, Appendix Table 10). Under the
assumption that teacher e¤ects are additive across years, these estimates of fade-out imply that a
1 unit improvement in teacher quality in all grades K-8 would raise 8th grade test scores by 3.4
units. Using the estimate in Column 3 of Appendix Table 2, it follows that only 3:4�0:00084

0:065 = 4%
of the income-score gradient can be attributed to di¤erences in teacher quality from grades K-8.
However, a sequence of good teachers can close a signi�cant portion of the achievement gap. If
teacher quality for low income students were improved by 0.1 units in all grades from K-8, 8th
grade scores would rise by 0.34, enough to o¤set more than a $50,000 di¤erence in family income.

Online Appendix E: Quasi-Experimental Estimator of Forecast Bias

This appendix shows that estimating (15) using OLS identi�es the degree of forecast bias under
Assumption 3. Recall that we de�ne the degree of forecast bias B = 1�� based on the best linear
predictor of Ait in a randomized experiment in year t:

E�[Aitj1; b�jt] = �t + �b�jt.
In the observational data, we can decompose test scores in year t into the e¤ect of teacher VA
E�[Aitj1; b�jt] and student-level errors �it:

Ait = �t + �b�jt + �it,
where �it may be correlated with b�jt because of non-random assignment. Taking averages over all
the students in a school-grade cell and �rst-di¤erencing gives the quasi-experimental speci�cation
in (15):

�Asgt = �+ ��Qsgt +��sgt,

where Qsgt is the mean of b�jt in school s in grade g in year t. It follows immediately that estimating
(15) using OLS yields an unbiased estimate of � under Assumption 3 (��sgt orthogonal to �Qsgt).
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Student Subject Year Grade Class Teacher Test Score

Matched
to Tax
Data?

Parent
Income

Bob Math 1992 4 1 Jones 0.5 1 $95K
Bob English 1992 4 1 Jones -0.3 1 $95K
Bob Math 1993 5 2 Smith 0.9 1 $95K
Bob English 1993 5 2 Smith 0.1 1 $95K
Bob Math 1994 6 3 Harris 1.5 1 $95K
Bob English 1994 6 4 Adams 0.5 1 $95K
Nancy Math 2002 3 5 Daniels 0.4 0 .
Nancy English 2002 3 5 Daniels 0.2 0 .
Nancy Math 2003 4 6 Jones -0.1 0 .
Nancy English 2003 4 6 Jones 0.1 0 .

APPENDIX TABLE 1
Structure of Analysis Dataset

Notes: This table illustrates the structure of the core sample, which combines information from the school
district database and the tax data. There is one row for each student-subject-school year. Students who were
not linked to the tax data have missing data on parent characteristics. The values in this table are not real data
and are for illustrative purposes only.  



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7)

Lagged Test Score 0.0122 0.0123
(0.0006) (0.0006)

Special education student -0.003
(0.001)

Parent Income ($10,000s) 0.00084 0.00001
(0.00013) (0.00011)

Minority (black or hispanic) student -0.001
(0.001)

School Mean Parent Income ($10,000s) 0.0016
(0.0007)

School Fraction Minority 0.003
(0.003)

Observations 6,942,979 6,942,979 6,094,498 6,094,498 6,942,979 6,942,979 6,942,979

APPENDIX TABLE 2
Differences in Teacher Quality Across Students and Schools

Teacher Value-Added

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by teacher in parentheses. Teacher VA, 
which is the dependent variable in all columns, is scaled in units of student test score standard deviations. Teacher VA is estimated using 
data from classes taught by the same teacher in other years, following the procedure in Sections II.B and 4 and using the baseline control 
vector (see notes to Table 3 for more details). The regressions are run at the student-subject-year level on the sample used to estimate 
the baseline VA model. We multiply the resulting regression coefficients by 1.56 to account for the attenuation bias due to using VA 
estimates instead of true VA as the dependent variable (see Appendix D for details). Columns 3 and 4 restrict the sample to students 
whom we are able to link to parents in the tax data. Each specification includes the student-level covariate(s) listed at the left hand side of 
the table and no additional control variables. See notes to Table 1 for definitions of these independent variables. In Columns 6-7, the 
independent variable is the school-mean of the independent variables in Columns 3 and 5, respectively. We calculate these means as the 
unweighted mean across all student-subject-year observations with non-missing data for the relevant variable in each school.



APPENDIX FIGURE 1

Empirical Distributions of Teacher VA Estimates

a) Elementary School
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b) Middle School
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Notes: This figure plots kernel densities of the empirical distribution of teacher VA estimates µ̂jt for each subject (math and

English) and school-level (elementary and middle school). The densities are weighted by the number of student test score

observations used to construct the teacher VA estimate and are estimated using a bandwidth of 0.01. We also report the

standard deviations of these empirical distributions of VA estimates. Note that these standard deviations are smaller than the

standard deviation of true teacher effects reported in Table 2 because VA estimates are shrunk toward the mean to account

for noise and obtain unbiased forecasts.
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