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Proof of Proposition 1. We use the stochastic approximation results described in
Evans and Honkapohja (1998, 2001) and (Marcet and Sargent 1989b). Set γ1,t = γ2,t =
t−1 and define zt = pt − θ′t−1Xt−1 + ut =

(
T (θt−1;σ2

t−1)− θt−1

)
Xt−1 − aβσ2

t−1vt + ut.
Then (12)-(15) in the main text, for the case of exogenous supply, can be re-written as
the equations (20)-(22) in the print Appendix to the paper, reproduced here:

θt = θt−1 + t−1S−1
t−1Xt−1

(
X ′t−1(T (θt−1;σ2

t−1)− θt−1)′ − aβσ2
t−1vt

)
St = St−1 + t−1

(
t

t+ 1
(XtX

′
t − St−1)

)
σ2
t = σ2

t−1 + t−1
(
ztz
′
t − σ2

t−1

)
.

Defining φt = (θt, vec(St), σ2
t )
′, and then using the framework of (Evans and Honkapohja

2001), it is straightforward to verify that the ODE (ordinary differential equation) asso-
ciated with the asymptotic behavior of the learning algorithm (16), i.e.

dφ

dτ
= h(φ).

is given by

hθ = S−1M(θ, σ2)(T (θ;σ2)− θ)′

hS = M(θ, σ2)− S
hσ2 = (T (θ;σ2)− θ)M(θ, σ2)(T (θ;σ2)− θ)′ + σ2

u + (aβσ2)2σ2
v − σ2,

and where M(θ, σ2) = EXt(θ, σ2)Xt(θ, σ2)′. Locally stable REE under (12)-(15) are as-
sociated with stable rest points of the ODE. The Jacobian matrix of this ODE, evaluated
at the REE, provides the relevant stability conditions:

β(1 + c)− 1 βk 0 0 0 0 −βas0
0 2βc− 1 0 0 0 0 0
0 0 −1 0 0 0 0

∂M(1,2)
∂k

∂M(1,2)
∂c 0 −1 0 0 0

∂M(1,2)
∂k

∂M(1,2)
∂c 0 0 −1 0 0

∂M(2,2)
∂k

∂M(2,2)
∂c 0 0 0 −1 0

0 0 0 0 0 0 2a2β2σ2
vσ

2 − 1


.

Local stability requires all eigenvalues to have negative real parts. The Jacobian matrix
has eigenvalues−1+2cβ,−1+β+cβ,−1+2a2β2σ2

vσ
2, and repeated values of−1. The root

−1 + 2a2β2σ2
vσ

2 corresponds to the derivative of the quadratic σ2
u + σ2

v(aβσ
2)2 − σ2 and

it is easily verified that this is negative at the lower root σ2 = σ2
L. At the fundamentals

solution c = 0, the other nonzero roots are −1 and −1 + β. Since 0 < β < 1 all roots



of the Jacobian matrix are negative, which implies E-stability (and thus stability under
learning). At the RE bubble solution c = β−1, there is one root equal to one, which
implies E-instability.

Proof of Proposition 2 We proceed by first noting that under constant-gain learning
γ1,t = γ1 > 0, γ2,t = γ2 > 0, it is possible to rewrite the real-time learning algorithms
(12)-(14) in the form

φγt = φγt−1 + γH(φγt−1, X̄t)

where X̄ ′t = (1, pt, pt−1, ut, vt)′. The components of H are implicitly defined by (12)-(14),
with a fixed multiplicative term γ2/γ1 incorporated into (14). The superscript γ has been
added to the parameter estimates φγ to emphasize their dependence on the gain γ = γ1.
In order to make a comparison between the solutions to the continuous time ODE and
the discrete time recursive algorithm, we need to define a corresponding continuous time
sequence for φγt , denoted φγ(τ), given by φγ(τ) = φγt if τγt ≤ τ < τγt+1, where τγt = tγ.

We sketch the proof to this proposition by making use of Proposition 7.8 of Evans and
Honkapohja, itself a re-statement of Benveniste, Metivier, and Priouret (1990, Theorem
7, Chp. 4.4.3, Part II). The proposition in the text is based on the proposition stated
below. Let D be an open set containing the fundamentals REE parameters θ∗, S∗, σ2∗.
In the case of exogenous share supply, the actual law of motion followed by price is

pt = T (kt−1, ct−1;σ2
t−1)Xt−1 − βaσ2

t−1vt.

It is clearly the case that the state dynamics are conditionally linear and can be written
as

X̄t ≡


Xt

Xt−1

ut
vt

 =


A(φt−1) 0 0 0

I 0 0 0
0 0 0 0
0 0 0 0

 X̄t−1 +


B(φt−1) 0 0

0 0 0
0 0 0
0 1 0
0 0 1

Wt

where I, 0 are conformable matrices, and

Xt = A(φt−1)Xt−1 +B(φt−1)Wt

with X ′t = (1, pt)′,W ′t = (1, ut, vt)′. The validity of the proposition depends on the
following properties as established in (Evans and Honkapohja 2001).

P1 Wt is iid with finite absolute moments.

P2 For any compact Q ⊂ D, supφ∈Q |B(φ)| ≤ M and supφ∈Q |A(φ)| ≤ ρ < 1, and | · |
is an appropriately defined matrix norm.

P3 For any compact Q ⊂ D, ∃C, q s.t. ∀φ ∈ Q and for all t |H(φ, x)| ≤ C(1 + |x|q).

P4 For any compact Q ⊂ D, H(φ, x) is twice continuously differentiable with bounded
second derivatives.



P5 h(φ) has continuous first and second derivatives on D.

Here h(φ) is as defined earlier except that the σ2 component of h(φ) is multiplied by
the fixed ratio γ2/γ1. The conditional linearity simplifies verification of these conditions.
Proposition 7.5 of (Evans and Honkapohja 2001) shows that conditions M1-M5 of their
Proposition 7.8 are implied by P1-P2. For their assumption A3’ we also make use of the
remark on p. 155, which shows that P4 is sufficient.

For given φ let pt(φ) = T (k, c;σ2)Xt−1 − βaσ2vt and let Xt(φ)′ = (1, pt(φ))′. Then
Xt(φ) is stationary for φ sufficiently close to the fundamentals REE. Therefore, fix D to
be an open set around (θ∗, S∗, σ2∗) such that ∀(θ, S, σ2) ∈ D, we have: (1) (θ∗, S∗, σ2∗)
are such that σ2∗ is the unique solution in D to the quadratic σ2

u + (aβσ2)2 − σ2 = 0, θ∗

is the unique fixed point of T (θ;σ2) on D with σ2 = σ2∗, S∗ = EXt(φ∗)Xt(φ∗)′, (2) for
some ε̃ > 0, det(S) ≥ ε̃ > 0, and (3) k(1 + c) ≥ −y0 and −1 < c < c̄ < β−1/2.

Write X̄t = Ā(φt−1)X̄t−1 + B̄(φt−1)Wt, where Ā, B̄ are given above. Clearly the
eigenvalues of Ā consist of zero and the eigenvalues of A. The set D is defined so that the
roots of A(φ) are inside the unit circle implying Ā(φ) will also have roots with modulus
less than one. It is straightforward to verify that assumptions P1-P5 hold. We use the
following result from (Evans and Honkapohja 2001):

PROPOSITION 3: [EH(2001), Proposition 7.8] Assume P1-P5. Consider the normal-
ized random variables Uγ(τ) = γ−1/2

[
φγ(τ)− φ̃(τ , φ0)

]
. As γ → 0, the process Uγ(τ),

0 ≤ τ ≤ T , converges weakly to the solution U(τ) of the stochastic differential equation

dU(τ) = Dφh(φ̃(τ , φ0))U(τ)dτ +R1/2(φ̃(τ , φ0))dW (τ)

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener process, and R
is a covariance matrix whose i, jth elements are

Rij(φ) =
∞∑

k=−∞

Cov
[
Hi(φ, X̄φ

k ),Hj(φ, X̄φ
0 )
]

Finally Proposition 2 can be established by noting that the solution to the stochastic
differential equation U(τ) has the following properties

EU(τ) = 0
dV ar(U(τ))

dτ
= Dφh(φ̃(τ , φ0))Vu(τ) + VuDφh(φ̃(τ , φ0))′ +R(φ̃(τ , φ0)),

where Vu = V ar(U(τ)).

Details on Approximating the Mean Dynamics With Endogenous Share Sup-
ply. Under learning we continue to have

pt = β (y0 + kt−1(1 + ct−1)) + βc2t−1pt−1 − βaσ2
t−1zst,



but when share supply may become endogenous additional care is required to construct
the mean dynamics. The condition for exogenous supply, s0 ≤ Φpt, is satisfied if and
only if

s0 ≤ Φ
β (k(1 + c) + y0)

1 + βaσ2Φ(1 + vt)
+ Φ

βc2

1 + βaσ2Φ(1 + vt)
pt−1, or

(23) s0Φ−1 + s0βaσ
2(1 + vt) ≤ β (k(1 + c) + y0) + βc2pt−1.

Given θ̃ = (k, c;σ2), equations (5), (6) and (23) specify pt = F (pt−1, vt; θ̃). For computing
mean dynamics the complication is that whether (23) is satisfied, and thus whether (5)
or (6) applies, depends on vt.

Mean dynamics are computed by fixing θ̃ and S̃ and computing the ODE, where the
expectation is taken over vt and pt(θ̃), the pt process for fixed θ̃. In general this must
be done using the process given by (5), (6) and (23), and for any given θ̃ one must take
account of the possibility that either regime will occur, depending on vt. However, at
least for “small” vt, a reasonable approximation would be to split the θ̃ space into two
regions: in one region the probability is high that (for the given θ̃) the pt(θ̃) process will
be given by (5), and in the other region the probability is high that the pt(θ̃) process will
be given by (6).

For the region defuned by equation (5), pt(θ̃) converges to a stationary AR(1) with
mean

Ept(θ̃) =
β
(
k(1 + c) + y0 − aσ2s0

)
1− βc2

≡ p̄H ,

provided βc2 < 1. If βc2 > 1 the condition s0 ≤ Φpt is satisfied (for limt→∞Ept(θ̃)). For
βc2 < 1 the condition is satisfied, using the above expression for Ept(θ̃) provided

s0Φ−1 + s0βaσ
2 ≤ β (k(1 + c) + y0) + βc2p̄H .

Here we have set vt = 0, and replaced pt−1 by its mean under (5). The condition can be
rewritten as

σ2 ≤ σ̄2
H(c, k), where

σ̄2
H(c, k) = (s0βa)−1

{
β (k(1 + c) + y0)− s0Φ−1 + βc2p̄H

}
.

For the region defined by equation (6) the linear approximation of the pt(θ̃) process is
of the form

(24) pt =
β (k(1 + c) + y0)

1 + βaσ2Φ
+

βc2

1 + βaσ2Φ
pt−1 − δvt,

which has mean

Ept = p̄L ≡
β (k(1 + c) + y0)
1− βc2 + βaσ2Φ

.



Here

δ =
β2aσ2Φ

(
k(1 + c) + y0 + βc2p̄L

)
(1 + βaσ2Φ)2

Based on this mean, the condition s0 > Φpt for (6) (with approximation (24)) will be
satisfied when

σ2 > σ̄2
L(c, k), where

σ̄2
L(c, k) = (s0βa)−1

{
β (k(1 + c) + y0)− s0Φ−1 + βc2p̄L

}
,

where we again set vt = 0 and where we set pt−1 at its mean under (24). Since p̄L < p̄H
we have σ̄2

L(c, k) < σ̄2
H(c, k). Thus when σ2 > σ̄2

H(c, k) and the distribution of vt has
small enough support, it is very likely that the (approximate) dynamics (24) will be
followed.

In the main text we present numerical results for the mean dynamics based on the
above approximation. Thus, for σ2 ≤ σ̄2

H(c, k), we assume the mean dynamics are based
on exogenous supply. For σ2 > σ̄2

H(c, k) the mean dynamics are instead assumed to be
given by the alternative mean dynamics based on (24). Note for (24) the corresponding
mapping from perceived law of motion to the actual law of motion has k, c components

(k, c)→
(
β (k(1 + c) + y0)

1 + βaσ2Φ
,

βc2

1 + βaσ2Φ

)
.

and there is a corresponding expression for the σ2 component of the ODE:

hσ2 =
(
T (θ;σ2)− θ

)
M(θ, S, σ2)

(
T (θ;σ2)− θ

)′
+ σ2

u + δ2σ2
v

It is worth remarking that this procedure ignores the chance that the process will
have endogenous supply when σ2 ≤ σ̄2

H(c, k) and it ignores the chance that it will have
exogenous supply when σ2 > σ̄2

H(c, k). Within and near the region σ̄2
L(c, k) < σ2 <

σ̄2
H(c, k) the approximation will be at its worst, since both regimes will have a significant

chance of arising. But in order to provide intuition for the real time learning results, this
approximation suffices.

Procedure for Computing the Confidence Ellipses. Here we outline the procedure.
Details on the general procedure are given in Evans and Honkapohja (2001, Chp. 14, p.
348-356). The confidence ellipsoids assume that the parameter estimates kt, ct will be
distributed asymptotically normal. Under similar assumptions to those for Proposition
2 this property can be established formally.

In (Evans and Honkapohja 2001) it is shown that θt ∼ N(θ∗, γV ) for small γ and large
t, where θ′ = (k, c)′ and V solves the matrix Riccati equation

Dθh(φ̄)V + V (Dθh(φ̄))′ = −Rθ(φ̄)

where R = EH(φ)H(φ)′ is as given in the proof to Proposition 2. Notice that the way



this Riccati equation is expressed omits the DSh(φ̄) and Dσ2h(φ̄) terms. This is because
R is a block diagonal matrix:

R = EH(φ̄)H(φ̄)′ =

 (aβ)2(σ̄2)2σ2
vM
−1 0 0

0 EvecHRvecH′R 0
0 0 σ2

u + (aβ)2(σ̄2)2σ2
v − σ̄2


where M = EXt−1X

′
t−1. The text solves V numerically, sets γ2/γ1 = 2, and plots the

50% and 95% concentration ellipses.
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